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Abstract

Understanding the rate of convergence to stationarity, or mixing time, of a Markov chain

is of interest for problems from shuffling cards, to providing rigorous bounds for the

runtime of Monte Carlo algorithms. In this thesis, we will provide a detailed survey

of some selected probabilistic and analytical techniques that can be used to bound the

mixing times of discrete Markov chains.

We will illustrate an application of rapidly mixing Markov chains by developing an ef-

ficient randomised algorithm for approximately counting graph colourings. Furthermore,

we will discuss the cutoff phenomenon, which describes how mixing occurs very abruptly

at, and not before, a precise point for certain Markov chains. Finally, we will culminate

with a detailed study of the Glauber dynamics for the mean-field Ising model, which

exhibits distinct mathematical behaviour at different temperature parametrisations, in-

cluding cutoff, rapid mixing, and torpid mixing.

iii



Contents

Chapter 1 Introduction 1

Chapter 2 The Stationary Distribution of a Markov Chain 5

2.1 Existence and uniqueness of stationary distributions . . . . . . . . . . . . 5

2.2 Convergence to stationary distribution . . . . . . . . . . . . . . . . . . . . 8

2.3 Ergodic theorem for Markov chains . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Total variation distance and mixing times . . . . . . . . . . . . . . . . . . 15

Chapter 3 Probabilistic Techniques for Analysing Mixing Times 21

3.1 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Path coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Strong stationary times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 4 Analytical Techniques for Analysing Mixing Times 37

4.1 Spectral representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Canonical paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 5 Connection Between Sampling and Counting 49

Chapter 6 The Cutoff Phenomenon 54

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Definitions of cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 7 The Mean-Field Ising Model 62

7.1 Glauber dynamics for the Ising model . . . . . . . . . . . . . . . . . . . . 63

7.2 Rapid mixing and cutoff at high temperatures . . . . . . . . . . . . . . . . 65

7.3 Mixing at the critical temperature . . . . . . . . . . . . . . . . . . . . . . 76

7.4 Exponentially slow mixing at low temperatures . . . . . . . . . . . . . . . 80

Chapter 8 Concluding Remarks 82

References 85

iv



Chapter 1

Introduction

Markov chains, introduced by the eponymous Markov [44], are a class of stochastic pro-

cesses for which the evolution only depends on the current state. Many classical results in

this area have been established (e.g. see Feller [24]), including the fundamental result that

a Markov chain will converge towards a stationary distribution under certain conditions.

Markov chains are a natural basis for modelling many real-world processes. For ex-

ample, shuffling a pack of cards can be viewed as a random walk on the symmetric group

Sn, which converges to the uniform distribution (under certain constraints). The Markov

chain Monte Carlo (MCMC) method, where random sampling is used to solve computa-

tionally intractable problems, also relies upon running a Markov chain until convergence

in order to draw (approximate) samples from a particular stationary distribution.

Motivated by these applications, we can ask some simple questions:

(1) How many shuffles does it take to mix up a pack of cards?

(2) How long should a MCMC sampler be run so that the samples drawn are acceptably

“close” to the stationary distribution?

Answering these questions requires the analysis of the rate of convergence towards sta-

tionarity, or mixing time, of a Markov chain, which is the focus of this thesis. The exact

distribution of a chain at time t seldom has a tractable expression, but the distance to

stationarity can often be bounded. Very roughly, we want to understand whether a given

chain “mixes rapidly”, or otherwise “mixes torpidly” (i.e. slowly).

The study of the mixing times of finite Markov chains began in the early 1980s (see [1,

2] for some of the early papers by Aldous and Diaconis). This has grown into a burgeoning

research area, and we can briefly mention some selected results. In the study of random

walks on finite groups, Bayer and Diaconis [6] prove that seven riffle shuffles is sufficient

to mix up a pack of cards. In theoretical computer science, provably rapidly mixing

Markov chains for sampling combinatorial objects are the basis of efficient randomised

algorithms [20, 31, 34]. The efficiency and mathematical behaviour of chains used to

sample from models in statistical physics have also been studied [32, 37, 42].

The excellent expository article of Diaconis [14], aptly named “The Markov Chain

Monte Carlo Revolution”, describes how the analysis of mixing times is not only of prac-

tical interest, but has also lead to (and leans on) fascinating mathematics from various

fields. This includes techniques from probability (coupling and stopping times), anal-

ysis (spectral methods and functional inequalities), algebra (group representations and

algebraic geometry), and combinatorics.
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Furthermore, an interesting phenomenon known as cutoff has also been observed for

certain Markov chains, which describes how the transition to stationarity occurs very

abruptly at, and not before, a precise point. Since the first example where a sharp cutoff

was demonstrated [16], it has been proved to occur in many more different classes of

chains, which suggests that it may be quite a general phenomenon.

Structure of thesis.

The aim of this thesis is to survey some of the mathematical techniques and problems

related to the analysis of mixing times of Markov chains. We will focus on discrete time

Markov chains with finite state spaces. The topics discussed are mainly in the field of

discrete probability, with some connections to linear algebra, functional analysis, and

combinatorics. The structure of this thesis is illustrated in Figure 1.0.1.

Chapter 2:
Markov Chains
and Stationarity

Chapter 3:
Probabilistic
Techniques

Chapter 4:
Analytical
Techniques

Chapter 5:
Sampling

and Counting

Chapter 6:
The Cutoff

Phenomenon

Chapter 7:
The Mean-Field

Ising Model

Figure 1.0.1: The arrows indicate the logical flow of the topics covered in the thesis.

The remainder of the introduction will establish the notation that will be used, as well

as the assumed knowledge. In Chapter 2, we will state and prove some classical results on

the stationary distributions of Markov chains, and precisely define mixing times. Next, we

will provide a detailed survey of some probabilistic methods (Chapter 3) and analytical

methods (Chapter 4) that can be used to analyse mixing times. The development of the

theory will closely follow the textbook of Levin, Peres, and Wilmer [38], which provides

an excellent introduction to this area of research.

Using the mathematical tools developed so far, the remainder of this thesis will exam-

ine some problems involving the analysis of mixing times. In Chapter 5, we will discuss

how rapidly mixing Markov chains can be used as the basis of efficient randomised algo-

rithms for “difficult” counting problems. We will prove that a rapidly mixing chain exists

for sampling proper q-colourings of a graph of maximum degree ∆, when q ≥ 2∆ + 1.

In Chapter 6, we will provide and prove the equivalence of various precise charac-

terisations of cutoff seen in the literature, which will require delicate control of mixing

times. In Chapter 7, this thesis will culminate with a detailed analysis of the Glauber
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dynamics for the mean-field Ising model from statistical physics. Following the paper of

Levin, Luczak, and Peres [37], we will prove that this chain exhibits distinct mathematical

behaviour at different temperature parametrisations, including cutoff, rapid mixing, and

torpid mixing. Finally, we will finish with some concluding remarks in Chapter 8.

Contributions.

Although this is a survey of known results, I have endeavoured to provide original proofs

and examples where possible.

� In Chapter 6, I provided original proofs for the equivalences of the various charac-

terisations of cutoff, as I have not seen such results in the literature.

� Rather than consider the standard Metropolis chain in Chapter 5, I obtained similar

results for an alternative Markov chain, known as the heat-bath Glauber dynamics.

Otherwise, if a good proof already exists, I have provided additional clarifying and expos-

itory details in several places, including the proof of the ergodic theorem (Theorem 2.17)

in Chapter 2, and the proof of the path coupling theorem (Theorem 3.12) in Chapter 3.

I have also selected nice examples for the theory from research papers, such as the

inverse riffle shuffle for strong stationary times from [2] (in Chapter 3), and the riffle

shuffle for cutoff [6] (in Chapter 6). For the major result on the Glauber dynamics for the

mean-field Ising model in Chapter 7, I have attempted to give a concise explanation of

the argument of [37]. I have used ideas from [18] to modify some parts of the argument

(e.g. Lemmas 7.6 and 7.13) that seems to improve the proof.

Assumed knowledge.

We will assume a basic background in linear algebra, including familiarity with concepts

such as matrices, eigenvalues, etc. (for example, refer to [27]). We will also assume famil-

iarity with concepts from probability theory, such as discrete probability spaces, properties

of the probability measure, random variables (independence, distribution, expected value,

variance, etc.), conditional probability, and discrete stochastic processes (for example, see

any introductory textbook such as [24, 26]).

The following inequalities relating the first and second moments of a random variable

to its tail probabilities will be particularly important.

Theorem 1.1 (Markov’s inequality ([26, p.311])). Let X be a random variable with finite

mean E [X]. Then for any a > 0,

P (|X| ≥ a) ≤ E [|X|]
a

. (1.1)

Theorem 1.2 (Chebyshev’s inequality ([26, p.319])). Let X be a random variable with

finite mean E [X] and variance Var(X). Then for any a > 0,

P (|X − µ| ≥ a) ≤ Var(X)

a
. (1.2)
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Notation.

We write N = {0, 1, 2, 3, . . . } and Z+ = {1, 2, 3, . . . }. Given x ∈ R, we denote the floor

(resp. ceiling) of x by bxc (resp. dxe), which is x rounded down (resp. up) to the nearest

integer. Floors and ceilings will typically be used with real arguments for functions with

integer-valued domains, however may sometimes be omitted for notational simplicity.

The basic object of study will be a discrete time Markov chain with finite state space

Ω, which we denote by M = (Xt)t∈N = (X0, X1, X2, . . . ). If A is a subset of Ω, we write

A ⊆ Ω, and denote its complement by Ac := Ω \A. We write P to denote the probability

measure of the underlying probability space under consideration. Recall that a Markov

chain satisfies the Markov property: for all x, y ∈ Ω,

P (Xt+1 = y | X0 = x0, X1 = x1, . . . , Xt = x) = P (Xt+1 = y | Xt = x) . (1.3)

We will consider time homogeneous chains, such that (1.3) does not depend on t. The

dependence of the chain on its starting state X0 = x will be indicated by Px.

This allows the chain to be defined by an |Ω| × |Ω| transition matrix P , such that

P (x, y) = P (Xt+1 = y | Xt = x) for all t ∈ N. By convention, P is right stochastic (i.e.

each row sums to one). The t-step probabilities of the chain are given by matrix multi-

plication, such that P t(x, y) = Px (Xt = y). We also write Px (Xt ∈ A) =
∑

y∈A P
t(x,A)

to denote the probability of starting in x and ending in a subset A of Ω after t steps.

We denote probability distributions on Ω by π, µ, ν, etc. These correspond to non-

negative row vectors that sum to one. Given a distribution µ and A ⊆ Ω, we can denote

the probability of an event A by µ(A) =
∑

x∈A µ(A). We say that a row vector π is

stationary for P if πP = π. If, in addition, π sums to one, then we say that π is a

stationary distribution for P .

Column vectors correspond to real-valued functions on Ω, which we denote by f , g,

etc. We will write Eµ [f ] =
∑

x∈Ω f(x)µ(x) to denote the expected value of f with respect

to distribution µ. Similarly, we write Varµ(f) =
∑

x∈Ω(f(x)−Eµ [f ])2µ(x) to denote the

variance of f with respect to distribution µ.

We write 1A : Ω→ {0, 1} for the indicator function on Ω, given A ⊆ Ω. This satisfies

1A(y) = 1 if y ∈ A, and 1A(y) = 0 if y /∈ A. We write δx := 1{x} for the Dirac delta

function, which represents a distribution with point mass at x.

Some asymptotic notation will also be used. If (an)n∈Z+ and (bn)n∈Z+ are sequences

of non-negative numbers, we write bn = o(an) to mean that bn/an tends to zero as

n→∞. We write bn = O(an) to mean that bn/an is bounded from above by a constant

for sufficiently large n. Similarly, we write bn = Ω(an) to mean that bn/an is bounded

from below by a constant for sufficiently large n. Finally, we write an � bn to mean that

an = O(bn) and an = Ω(bn), i.e. an and bn are of the same order asymptotically.
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Chapter 2

The Stationary Distribution of a Markov Chain

This chapter will describe some fundamental results on the theory of Markov chains. In

Section 2.1, we prove the existence and uniqueness of a stationary distribution for an

irreducible chain. Section 2.2 will show that if such a chain is also aperiodic, then it

will converge towards its stationary distribution. Furthermore, Section 2.3 will relate the

stationary distribution to an ergodic theorem for Markov chains. Finally, Section 2.4 will

introduce the total variation distance between distributions, and mixing times.

The main reference for this chapter is the textbook by Levin, Peres and Wilmer [38].

For an extension of the theory to chains in continuous time and with countable state

spaces, see [38, Chapters 20, 21]. For results on chains with general state spaces, see [50].

2.1 Existence and uniqueness of stationary distributions

We begin by introducing some terminology used in the classification of Markov chains

(for a classical reference, refer to Feller [24]). Let x, y ∈ Ω be any two states. We say

that y is accessible from x, written x → y, if P r(x, y) > 0 for some r ∈ Z+. If x → y

and y → x, we say that x and y communicate, written x ↔ y. It is straightforward to

verify that ↔ is an equivalence relation on Ω, and we call the induced equivalence classes

communicating classes. We say that x is absorbing if P (x, x) = 1.

Definition 2.1. (i) A Markov chain M is irreducible if x ↔ y for all x, y ∈ Ω.

In other words, there is a single communicating class, which means that for any

x, y ∈ Ω, there exists an r ∈ Z+ such that P r(x, y) > 0.

(ii) For x ∈ Ω, let T (x) := {t ∈ Z+ : P t(x, x) > 0}. The period of x is the greatest

common divisor of T (x). It can be shown that this is a class property that is shared

by all the members of a communicating class, and so the period of an irreducible

chain is well-defined. An irreducible chain is aperiodic if its period is one.

Definition 2.2. The hitting time of x ∈ Ω is defined by τx := min{t ∈ N : Xt = x},
where we take τx = ∞ if the state is never reached. Similarly, for when only positive

hitting times are desired, we define τ+
x := min{t ∈ Z+ : Xt = x}. If the chain starts at x,

we call τ+
x the first return time of x.

A state x ∈ Ω is recurrent if Px (τ+
x <∞) = 1 (i.e. its first return time is almost

surely bounded), otherwise it is transient. A recurrent state can further be classified

as positive recurrent if Ex [τ+
x ] < ∞, or null recurrent otherwise. It can be shown that

recurrence and transience are also class properties.
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Recurrence and transience are more important for chains with countable (or larger)

state spaces, which is beyond the scope of this thesis. The next lemma shows that an

irreducible chain with a finite state space is automatically (positive) recurrent.

Lemma 2.3. Let P be the transition matrix of an irreducible Markov chain with finite

state space Ω. Then for any x, y ∈ Ω, Ex
[
τ+
y

]
<∞, which implies that Px

(
τ+
y <∞

)
= 1.

Proof. By irreducibility, there exists r ∈ Z+ and real 0 < ε < 1, such that for any pair of

states z, w ∈ Ω, there exists a positive integer j ≤ r such that P j(z, w) ≥ ε. In particular,

for any time t and value of Xt, the probability of hitting state y in the next r steps is

at least ε. Hence, by the Markov property, Px
(
τ+
y > kr

)
≤ (1− ε)Px

(
τ+
y > (k − 1)r

)
for

any k ∈ Z+. Iterating this expression implies that

Px
(
τ+
y > kr

)
≤ (1− ε)k. (2.1)

Since τ+
y is a non-negative random variable, the tail sum formula for the expectation

(which follows from interchanging the order of summation, e.g. see [26, p.84]) can be

used to write

Ex
[
τ+
y

]
=
∞∑
t=0

Px
(
τ+
y > t

)
. (2.2)

Note that the tail probabilities Px
(
τ+
y > t

)
are non-increasing in t. Therefore, they can

be grouped into blocks of r, and then bounded from above by the first time in each block.

Hence, by using (2.1),

Ex
[
τ+
y

]
≤
∞∑
k=0

r · Px
(
τ+
y > kr

)
≤ r

∞∑
k=0

(1− ε)k =
r

ε
,

which is finite. Next, note that Px
(
τ+
y =∞

)
= limm→∞ Px

(
τ+
y ≥ m

)
by continuity from

above. By Markov’s inequality (Theorem 1.1), Px
(
τ+
y ≥ m

)
≤ Ex[τ+

y ]
m . This tends to zero

as m→∞ since Ex [τ+
x ] is finite, and therefore Px

(
τ+
y <∞

)
= 0.

We will now prove, using a probabilistic approach, the existence and uniqueness of

a stationary distribution for an irreducible Markov chain. Intuitively, the assumption of

irreducibility means that the chain cannot be decomposed into separate chains, each of

which supports a different stationary distribution.

Proposition 2.4. Let P be the transition matrix of an irreducible Markov chain with

finite state space Ω. Then the strictly positive distribution π(x) = 1/Ex [τ+
x ] satisfies

π = πP . Moreover, π is the unique stationary distribution of P .

Proof. Existence. Fix any arbitrary state x ∈ Ω. For y ∈ Ω, define

π̃x(y) :=
∞∑
t=0

Px
(
Xt = y, τ+

x > t
)

= Ex [# visits to y before returning to x] . (2.3)
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Note that Px (Xt = y, τ+
x > t) ≤ Px (τ+

x > t), and hence π̃x(y) ≤ Ex [τ+
x ]. By Lemma 2.3,

Ex [τ+
x ] is finite, and so π̃x is well-defined. We claim that π̃x is stationary for P . For any

y ∈ Ω,

π̃x P (y) =
∑
z∈Ω

π̃x(z)P (z, y) =
∑
z∈Ω

∞∑
t=0

Px
(
Xt = z, τ+

x > t
)
P (z, y).

Note that the event {τ+
x > t} is equivalent to {τ+

x ≥ t+1}. Moreover, by the Markov prop-

erty, Px (Xt = z, τ+
x > t)P (z, y) = Px (Xt = z, Xt+1 = y, τ+

x ≥ t+ 1). Since the sum-

mands are non-negative, we can interchange the order of summation, which shows that

π̃x P (y) =
∞∑
t=0

∑
z∈Ω

Px
(
Xt = z,Xt+1 = y, τ+

x ≥ t+ 1
)

=

∞∑
t=1

Px
(
Xt = y, τ+

x ≥ t
)

= π̃x(y)− Px
(
X0 = y, τ+

x > 0
)

+
∞∑
t=1

Px
(
Xt = y, τ+

x = t
)
. (2.4)

For the last equality, (2.3) was used. Observe that the second term in the final expression

is equal to Px (X0 = y) = 1{y=x}, and the last term is equal to Px
(
Xτ+

x
= y
)

= 1{y=x}.

If y = x then both terms are one and cancel, and if y 6= x then both terms are zero.

Therefore, π̃x P = π̃x, which shows that π̃x is stationary for P , and it suffices to

normalise π̃x. By interchanging the order of summation, and then using the tail sum

formula for the expectation again, as in (2.2), the normalising factor is

∑
y∈Ω

π̃x(y) =
∞∑
t=0

∑
y∈Ω

Px
(
Xt = y, τ+

x > t
)

=
∞∑
t=0

Px
(
τ+
x > t

)
= Ex

[
τ+
x

]
.

Hence,

π(y) :=
π̃x(y)

Ex
[
τ+
x

] for all y ∈ Ω (2.5)

is a probability distribution satisfying πP = π. Since the choice of x was arbitrary,

choosing x = y shows that π(y) = 1/Ey
[
τ+
y

]
.

Uniqueness. Suppose that π̃ is another stationary distribution of P , such that π̃P = π̃.

Since Ω is finite, there exists a state y ∈ Ω that minimises the ratio π(x)/π̃(x). In other

words,

c :=
π(y)

π̃(y)
≤ π(x)

π̃(x)
for all x ∈ Ω.

Suppose that x ∈ Ω satisfies P (x, y) > 0 and π(x)/π̃(x) > c. Using πP = π and π̃P = π̃

with the inequalities π̃(x) < π(x)/c and π̃(z) ≤ π(z)/c for all z ∈ Ω implies that

π̃(y) = π̃(x)P (x, y) +
∑
z 6=x

π̃(z)P (z, y) <
1

c

π(x)P (x, y) +
∑
z 6=x

π(z)P (z, y)

 =
π(y)

c
.
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This shows that π(y)/π̃(y) > c, contradicting the choice of y. Therefore, if P (x, y) > 0,

then π(x)/π̃(x) = c. For any x ∈ Ω, irreducibility of P implies that there exists a finite

sequence x = x0, x1, . . . , xk = y with P (xi−1, xi) > 0. By the above argument, we have

c = π(y)/π̃(y) = π(xk−1)/π̃(xk−1) = · · · = π(x)/π̃(x), and so π(x) = cπ̃(x) for all x ∈ Ω.

Since π and π̃ sum to one, it follows that c = 1 and π = π̃.

Definition 2.5. Let P be the transition matrix of a Markov chain. If π is a probability

distribution on Ω which satisfies the detailed balance equations

π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ Ω, (2.6)

then we say that the chain (or equivalently, P ) is reversible with respect to π.

Reversibility is a very important property. The following shows that it automati-

cally provides a stationary distribution (which is unique, if the chain is irreducible). In

Section 4.1, reversible chains will also be shown to have nice spectral properties.

Proposition 2.6. Let π be a distribution on a finite state space Ω. If P is a transition

matrix which is reversible with respect to π, then π is stationary for P .

Proof. Since π satisfies the detailed balance conditions (2.6), and
∑

y∈Ω P (x, y) = 1,

πP (x) =
∑
y∈Ω

π(y)P (y, x) =
∑
y∈Ω

π(x)P (x, y) = π(x), for all x ∈ Ω.

Hence, π is stationary since it satisfies πP = π.

Remark 2.7. (i) A symmetric transition matrix satisfies P (x, y) = P (y, x) for all

x, y ∈ Ω. If P is symmetric, then it is reversible with respect to the uniform

distribution π, given by π(x) = |Ω|−1 for all x ∈ Ω.

(ii) A random walk on a group G with increment distribution µ has transition proba-

bilities P (g, hg) = µ(h) for all g, h ∈ G. i.e. µ specifies an element with which we

multiply the current state on the left. We say that µ is symmetric if µ(g) = µ(g−1)

for all g ∈ G.

Let π be the uniform distribution on G. A quick calculation shows that π = πP

holds, since π(g) =
∑

h∈G
1
|G| · P (h, g) = 1

|G|
∑

k∈G µ(k) = 1
|G| for all g ∈ G, where

we re-indexed by k = gh−1 in the last sum. Thus, π is stationary for P . Moreover,

P is reversible with respect to π if and only if µ is symmetric.

2.2 Convergence to stationary distribution

If M is an irreducible Markov chain, then it has a unique stationary distribution π

by Proposition 2.4. We will prove that under the further assumption that the chain is

aperiodic, then it will converge towards π.

8



First, we will need the following lemma which shows that an aperiodic, irreducible

matrix can be raised to a suitable power such that it becomes strictly positive. The

proof, which will be omitted, relies on some number-theoretic facts about subsets of N.

Lemma 2.8 ([38, Proposition 1.7]). Suppose that P is an aperiodic, irreducible transition

matrix. Then there exists r ∈ Z+ such that P r > 0, or in other words, P r(x, y) > 0 for

all x, y ∈ Ω.

The following facts about the powers of stochastic matrices (i.e. each row sums to

one) will also be useful.

Lemma 2.9. (i) If A and B are n × n stochastic matrices, then their product AB is

also stochastic. In particular, this implies that Ak is stochastic for any k ∈ N.

(ii) If π is a row vector that is stationary for a stochastic matrix S, then π is also

stationary for Sk for any k ∈ N.

Proof. (i) The fact that the rows of A and B sum to one can be written as A1 = 1 and

B1 = 1, where 1 is the column vector consisting of ones. Therefore, AB1 = A1 = 1 by

the associativity of matrix multiplication, so the rows of AB also sum to one. It is clear

that if all the entries of A and B are non-negative, then they will also be for AB.

(ii) This is clear from πSk = (πS)Sk−1 = πSk−1 = · · · = π.

Theorem 2.10 (Convergence theorem). Let P be the transition matrix of an irreducible

and aperiodic Markov chain with finite state space Ω and stationary distribution π. Then

there exist constants 0 < α < 1 and C > 0 such that∑
y∈Ω

|P t(x, y)− π(y)| ≤ Cαt for all x ∈ Ω. (2.7)

In particular, for any starting state z ∈ Ω, π(x) = limt→∞ P
t(z, x).

Proof. Let Π be the |Ω| × |Ω| stochastic matrix such that each row is equal to π. The

strategy will be to decompose P into an independent mixture of Π and another stochastic

matrix Q, such that, in the long run, most of the draws come from Π.

By Lemma 2.8, there exists r ∈ Z+ such that P r > 0. From Proposition 2.4, the

stationary distribution satisfies π(y) > 0 for all y ∈ Ω. Therefore, P r(x, y) = δxy π(y)

for some constants δxy > 0. By taking the minimum of δxy over all states, there exists a

constant 0 < δ < 1 satisfying δ ≤ δxy for all x, y ∈ Ω such that

P r(x, y) ≥ δπ(y) for all x, y ∈ Ω. (2.8)

Let θ := 1− δ. Then (2.8) allows us to define a stochastic matrix Q such that

P r = (1− θ)Π + θQ. (2.9)
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We will show by induction that

P rk = (1− θk)Π + θkQk. (2.10)

This holds for k = 1 by (2.9). Assuming that this holds for k = m, we can write

P r(m+1) = P rmP r = (1− θm)ΠP r + θmQmP r

= (1− θm)ΠP r + (1− θ)θmQmΠ + θm+1Qm+1,

where (2.9) was used in the second term of the sum. Note that AΠ = Π for any stochastic

matrix A. By Lemma 2.9, Qm is a stochastic matrix, and therefore QmΠ = Π. Further-

more, if S is a stochastic matrix satisfying πS = π, then it also satisfies ΠS = Π. The

same lemma shows that π is stationary for P r, and therefore ΠP r = Π. Thus,

P r(m+1) = (1− θm)Π + (1− θ)θmΠ + θm+1Qm+1

= (1− θm+1)Π + θm+1Qm+1.

Hence (2.10) holds for k = m + 1, and consequently for all k. For any j ∈ N, note that

ΠP j = Π. Therefore, multiplying (2.10) on the right by P j and rearranging shows that

P rk+j −Π = θk(QkP j −Π). (2.11)

For any fixed row x ∈ Ω, this gives the difference in distribution between the chain started

at x after rk + j steps, and the stationary distribution. Therefore,∑
y∈Ω

|P rk+j(x, y)− π(y)| = θk
∑
y∈Ω

|QkP j(x, y)− π(y)| ≤ 2θk. (2.12)

The inequality follows from
∑

y∈Ω |QkP j(x, y) − π(y)| ≤
∑

y∈Ω(QkP j(x, y) + π(y)) = 2,

using the triangle inequality, and the fact that QkP j is stochastic from Lemma 2.9. For

any t ∈ N, we can write t = rk + j, where 0 ≤ j < r. By defining α := θ1/r ∈ (0, 1) and

C := 2θ(r−1)/r > 0, we have the inequality 2θk = 2θ−j/rθt/r ≤ Cαt. Since this works for

all x ∈ Ω, putting these constants into (2.12) immediately implies (2.7).

The following simple example shows that aperiodicity is necessary for convergence.

Example 2.11. Consider a Markov chain with Ω = {x, y} and transition matrix

P =

(
0 1

1 0

)
.

It is clear that P is irreducible, has period two, and has unique stationary distribution

π =
(

1
2

1
2

)
. However, P cannot converge to π as t tends to infinity, since P t(x, y) = 1

if t is even, and P t(x, y) = 0 if t is odd.
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The following proposition explains that if a chain is periodic, then its states can be

partitioned into equivalence classes on which it moves between in a cyclic manner.

Proposition 2.12 ([38, Exercise 1.6]). Let P be the transition matrix of an irreducible

Markov chain with finite state space Ω. If P has period b ∈ Z+, then Ω can be partitioned

into b classes C0, C1, . . . , Cb−1 such that P (x, y) > 0 only if x ∈ Ck and y ∈ Ck+1 (where

the indices are taken modulo b).

Proof. Fix x0 ∈ Ω. Recall that the period of the chain is b if and only if gcd T (x0) = b,

where T (x0) = {t ∈ Z+ : P t(x0, x0) > 0}. For k = 0, 1, . . . , b− 1, define

Ck := {x ∈ Ω : Pmb+k(x0, x) > 0 for some m ∈ N}, (2.13)

which is the set of states that are accessible from x0 in k (mod b) steps. It can be checked

that {Ck}b−1
k=0 partitions Ω. In other words, the sets are pairwise disjoint and cover Ω.

Furthermore, it can also be checked that if x ∈ Ck and P (x, y) > 0, then y ∈ Ck+1

necessarily. However, the details for these claims will be omitted.

Remark 2.13. In practice, periodicity is not a real problem, since any chain can be made

aperiodic by adding in self-loops, such that P̃ (x, x) ≥ 1/2 for all x ∈ Ω. Such a chain is

called a lazy chain. Lazy chains are further discussed in Lemma 4.4 and its accompanying

Remark 4.5 in Section 4.1.

While the proofs in this chapter have taken a probabilistic route so far, there are in fact

multiple proofs of these classical results in Markov chain theory. In particular, an algebraic

approach uses the Perron-Frobenius theorem, which has the benefit of highlighting the

important connection to the eigenvalues of P . We will now present some of these main

results without proof, however the full details can be found in [53].

Theorem 2.14 (Perron-Frobenius Theorem, [53, Theorem 1.1, Corollary 1]). We say

that a matrix A is primitive if Ak > 0 for some k ∈ Z+. Suppose that A is a non-

negative, primitive matrix. Then there exists a real eigenvalue r > 0, which we call the

Perron-Frobenius eigenvalue of A, such that

(i) There exist strictly positive left and right eigenvectors corresponding to r. Moreover,

the eigenvectors corresponding to r are unique up to constant multiples.

(ii) For any other eigenvalue λ of A, |λ| < r.

(iii) r is bounded from below by the minimum row (resp. column) sum and from above

by the maximum row (resp. column) sum.

Let P be an aperiodic, irreducible transition matrix, then Lemma 2.8 shows that P

is primitive. Since the row sums of P are all one, Theorem 2.14 immediately implies

that the Perron-Frobenius eigenvalue of P is r = 1. Moreover, the left eigenvectors of P

corresponding to r live in a one-dimensional subspace, and hence there exists a unique

vector π with entries summing to one that satisfies πP = π, which implies the existence
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and uniqueness of a stationary distribution. Finally, the convergence theorem follows

from [53, Theorem 1.2], which implies that P t → 1π elementwise as t→∞.

Another consequence of the Perron-Frobenius theorem is that all the eigenvalues of P

can be written in decreasing order 1 = λ1 > λ2 ≥ · · · ≥ λ|Ω| > −1. We will particularly

be interested in the eigenvalue with the largest absolute value, which is either λ2 or λ|Ω|,

since it can be used to bound mixing times as Section 4.1 will describe later.

2.3 Ergodic theorem for Markov chains

We will finish this chapter by proving how the stationary distribution of an irreducible

Markov chain relates to an ergodic theorem. Intuitively, this describes how an “average

over time” equals an “average over the state space” in the long run.

First, we will introduce another probabilistic concept. We say that a random variable

τ taking values in N∪{+∞} is a stopping time for the stochastic process (Xt)t∈N if the

event {τ = t} is determined by X0, X1, . . . , Xt for every t ∈ N.

The following proposition proves the strong Markov property, which means that

a chain will also “forget the past” whenever it is stopped by a stopping time. This is not

too difficult to show for discrete-time chains with countable state spaces, since this avoids

any complications from working in continuous time, or with uncountable state spaces.

Proposition 2.15. Let τ be a stopping time for a discrete-time Markov chain M with

finite state space Ω. Let A denote the event {X0 = x0, X1 = x1, . . . , Xτ−1 = xτ−1}. Then

for any ` ∈ Z+, conditional on τ <∞,

P (Xτ+1 = y1, . . . , Xτ+` = y` | Xτ = x,A) = Px (X1 = y1, . . . , X` = y`) . (2.14)

Proof. It will be sufficient to prove (2.14) for ` = 1 (i.e. one time step). By the definition

of conditional probability and the Law of Total Probability (e.g. see [26, p.22]),

Px0 (Xτ+1 = y | Xτ = x,A) =
P (Xτ+1 = y,Xτ = x,A)

P (Xτ = x,A)

=

∑∞
k=0 P (Xk+1 = y,Xk = x,A)P (τ = k)∑∞

k=0 P (Xk = x,A)P (τ = k)

=

∑∞
k=0 P (Xk+1 = y | Xk = x,A)P (Xk = x,A)P (τ = k)∑∞

k=0 P (Xk = x,A)P (τ = k)
.

By the Markov property, P (Xk+1 = y | Xk = x,A) = Px (X1 = y). Therefore,

Px0 (Xτ+1 = y | Xτ = x,A) =
Px (X1 = y)

∑∞
k=0 P (Xk = x,A)P (τ = k)∑∞

k=0 P (Xk = x,A)P (τ = k)
= Px (X1 = y) ,

as desired.

The following technical lemma provides conditions under which convergence of a series

along a subsequence implies convergence of the entire series.
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Lemma 2.16. Let (an)n∈N be a bounded sequence. Suppose that (ank)k∈N is a subsequence

with indices satisfying limk→∞
nk
nk+1

= 1. Then

lim
k→∞

an1 + an2 · · ·+ ank
nk

= a implies that lim
n→∞

a1 + a2 + · · ·+ an
n

= a.

Proof. Since (an)n∈N is bounded, there exists a real B ≥ 0 such that |an| ≤ B for all

n ∈ N. Fix n ∈ N. Then we can choose k such that nk ≤ n < nk+1. Let An = 1
n

∑n
j=1 aj .

Then

An =
nk
n
Ank +

∑n
j=nk+1 aj

n
. (2.15)

Since nk
nk+1

< nk
n ≤ 1, and nk

nk+1
→ 1 by assumption, this implies nk

n → 1 as n → ∞ by

sandwiching. Moreover, Ank → a as n → ∞, also by assumption. The absolute value of

the second term of (2.15) is bounded from above by
B(nk+1−nk)

nk
, which tends to zero as

n→∞. Hence, the second term also tends to zero. Therefore, An → a as n→∞.

We can now prove the ergodic theorem. The key idea will be to use the hitting time

τ+
x defined in Definition 2.2 (which is clearly a stopping time), and the strong Markov

property to separate the chain into independent and identically distributed (i.i.d.) blocks.

Theorem 2.17 (Ergodic theorem). Let M = (Xt)t∈N be an irreducible Markov chain

with finite state space Ω, and f be a real-valued function on Ω. Then for any starting

distribution µ on Ω, 1
t

∑t−1
s=0 f(Xs)→ Eπ [f ] as t→∞ almost surely. Equivalently,

Pµ

(
lim
t→∞

1

t

t−1∑
s=0

f(Xs) = Eπ [f ]

)
= 1. (2.16)

In particular, taking f = δx shows that π describes the average time spent in each state

in the long run:

Pµ

(
lim
t→∞

1

t

t−1∑
s=0

1{Xs=x} = π(x)

)
= 1. (2.17)

Proof. Fix a state x ∈ Ω. Consider the sequence of stopping times (τ+
x,k)k∈N, where

τ+
x,0 := 0, τ+

x,k := min{t > τ+
x,k−1 : Xt = x}, k ∈ N. (2.18)

For convenience, write τ+
x := τ+

x,1, which is the first return time in Definition 2.2. Note

that τ+
x is almost surely bounded by Lemma 2.3. Define

Yk :=

τ+
x,k−1∑

s=τ+
x,(k−1)

f(Xs), and St :=

t−1∑
s=0

f(Xs). (2.19)

Note that for all k ∈ N, Xτ+
x,(k−1)

= x. Since each Yk is completely determined by

Xτ+
x,(k−1)

, Xτ+
x,(k−1)

+1, . . . , Xτ+
x,k−1, the strong Markov property (Proposition 2.15) implies
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that (Yk)k∈N forms an i.i.d. sequence. Each Yk has common mean

Ex [Y1] = Ex

τ+
x −1∑
s=0

f(Xs)

 = Ex

τ+
x −1∑
s=0

∑
y∈Ω

f(y)1{Xs=y}

 =
∑
y∈Ω

f(y)Ex

τ+
x −1∑
s=0

1{Xs=y}

 .
For the last equality, the sum was interchanged, and the linearity of the expectation was

used. Observe that the expectation in the last term is equal to π̃x(y), the expected number

of visits to y before returning to x, as defined in (2.3). This was shown to be equal to

π(y)Ex [τ+
x ] in (2.5). Therefore,

Ex [Y1] =
∑
y∈Ω

f(y)π(y)Ex
[
τ+
x

]
= Eπ [f ] Ex

[
τ+
x

]
. (2.20)

Since Ex [τ+
x ] < ∞ from Lemma 2.3, (2.20) shows that Ex [Y1] is also finite. Therefore,

since Sτ+
x,n

=
∑n

k=1 Yk is a sum of the n i.i.d. Yk, the Strong Law of Large Numbers ([26,

p.329]) implies that

Px

(
lim
n→∞

Sτ+
x,n

n
= Ex [Y1]

)
= 1. (2.21)

Next, we can also write τ+
x,n =

∑n
k=1(τ+

x,k − τ
+
x,(k−1)). By the strong Markov property

again, each increment is i.i.d., since the chain effectively resets after each return to x.

Therefore, using the Strong Law of Large Numbers again implies that

Px

(
lim
n→∞

τ+
x,n

n
= Ex

[
τ+
x

])
= 1. (2.22)

Combining the almost sure statements in (2.21) and (2.22), and using (2.20), shows that

Px

(
lim
n→∞

Sτ+
x,n

τ+
x,n

= Eπ [f ]

)
= 1. (2.23)

Note that f(Xt) is bounded, since the state space Ω is finite. Furthermore, for all n ∈ N,

τ+
x,(n+1) ≥ n + 1, and τ+

x,(n+1) − τ
+
x,n has the same distribution as τ+

x . Therefore, each

increment τ+
x,(n+1) − τ

+
x,n is also almost surely bounded, and so there exists a real M > 0

such that

0 ≤
τ+
x,(n+1) − τ

+
x,n

τ+
x,(n+1)

≤ M

n+ 1
almost surely.

Hence, limn→∞
τ+
x,n

τ+
x,(n+1)

= 1 almost surely. By Lemma 2.16, (2.23) implies that

Px

(
lim
t→∞

1

t

t−1∑
s=0

f(Xs) = Eπ [f ]

)
= 1.
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Since this holds for any x ∈ Ω, we can verify that (2.16) holds for any starting distribution

µ on Ω by averaging across all the states. That is,

Pµ

(
lim
t→∞

1

t

t−1∑
s=0

f(Xs) = Eπ [f ]

)
=
∑
x∈Ω

Px

(
lim
t→∞

1

t

t−1∑
s=0

f(Xs) = Eπ [f ]

)
µ(x) = 1,

as desired.

2.4 Total variation distance and mixing times

In this section, we will make precise the notion of distance between two distributions.

This will allow the rate of convergence towards stationarity to be analysed.

Definition 2.18. Let µ and ν be two probability distributions on a finite state space Ω.

The total variation distance between µ and ν is defined by

‖µ− ν‖TV := max
A⊆Ω
|µ(A)− ν(A)|, (2.24)

where µ(A) =
∑

x∈A µ(x) and similarly for ν. Since we are interested in bounding the

distance of P t to stationarity uniformly over all starting states, define

d(t) := max
x∈Ω

∥∥P t(x, ·)− π∥∥
TV

, (2.25)

d(t) := max
x,y∈Ω

∥∥P t(x, ·)− P t(y, ·)∥∥
TV

. (2.26)

Proposition 2.19. The total variation distance has the equivalent representations:

(i) Half the usual L1 norm:

‖µ− ν‖TV =
1

2

∑
x∈Ω

|µ(x)− ν(x)|. (2.27)

(ii) The usual operator norm for the dual of the space of bounded, measurable functions:

‖µ− ν‖TV = sup
‖f‖∞≤1

|Eµ [f ]− Eν [f ] |. (2.28)

Here f : Ω→ R, ‖f‖∞ = maxx∈Ω |f(x)|, and Eµ [f ] =
∑

x∈Ω f(x)µ(x) (as for ν).

Proof. (i) Let B := {x ∈ Ω : µ(x)− ν(x) ≥ 0}, and A ⊆ Ω be any event. Then

µ(A)− ν(A) =
∑
x∈B

[µ(x)− ν(x)] +
∑

x∈A∩Bc
[µ(x)− ν(x)]−

∑
x∈Ac∩B

[µ(x)− ν(x)].

Since µ(x)− ν(x) < 0 for any x ∈ Bc, and µ(x)− ν(x) ≥ 0 for any x ∈ B, it follows that

µ(A)− ν(A) ≤
∑
x∈B

[µ(x)− ν(x)] = µ(B)− ν(B). (2.29)
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Similarly, the same argument applied to Bc shows that

ν(A)− µ(A) ≤ ν(Bc)− µ(Bc). (2.30)

Observe that
[
µ(B)− ν(B)

]
−
[
ν(Bc)− µ(Bc)

]
= µ(Ω)− ν(Ω) = 0, and hence the upper

bounds in (2.29) and (2.30) are actually equal. Since this holds for any A ⊆ Ω, it follows

that either set B or Bc provides the total variation distance. Hence,

‖µ− ν‖TV =
∑
x∈Ω

µ(x)≥ν(x)

[µ(x)− ν(x)] =
∑
x∈Ω

µ(x)<ν(x)

[ν(x)− µ(x)]. (2.31)

Using (2.31), it follows that

‖µ− ν‖TV =
1

2

( ∑
x∈Ω

µ(x)≥ν(x)

[µ(x)− ν(x)] +
∑
x∈Ω

µ(x)<ν(x)

[ν(x)− µ(x)]

)
=

1

2

∑
x∈Ω

|µ(x)− ν(x)|.

(2.32)

(ii) Suppose that f satisfies ‖f‖∞ ≤ 1. Then, using the triangle inequality,

1

2

∣∣∣∣∣∑
x∈Ω

f(x)µ(x)−
∑
x∈Ω

f(x)ν(x)

∣∣∣∣∣ ≤ 1

2

∑
x∈Ω

|f(x)| · |µ(x)− ν(x)|

≤ 1

2

∑
x∈Ω

|µ(x)− ν(x)| = ‖µ− ν‖TV .

Hence, sup‖f‖∞≤1 |Eµ [f ]−Eν [f ] | ≤ ‖µ− ν‖TV. To show the opposite inequality, consider

the function f defined by f(x) = 1 if µ(x) ≥ ν(x) (i.e. x is in the set B from part (i)),

and f(x) = −1 if µ(x) < ν(x). Then f satisfies ‖f‖∞ ≤ 1, and

1

2

∣∣∣∣∣∑
x∈Ω

f(x)µ(x)−
∑
x∈Ω

f(x)ν(x)

∣∣∣∣∣ =
1

2

( ∑
x∈Ω

µ(x)≥ν(x)

[µ(x)− ν(x)] +
∑
x∈Ω

µ(x)<ν(x)

[ν(x)− µ(x)]

)
,

which is ‖µ− ν‖TV from (2.32). Therefore, sup‖f‖∞≤1 |Eµ [f ]− Eν [f ] | ≥ ‖µ− ν‖TV.

Remark 2.20. (i) Proposition 2.19 shows that the total variation distance is a metric

between distributions on Ω.

(ii) By (2.24), the total variation distance has the probabilistic interpretation as the

maximum difference in probability assigned to any event.

(iii) Since two distributions are close only if they are uniformly close on all subsets of

Ω, the total variation distance can be quite unforgiving of small, local deviations as

the following example from [2] illustrates. Consider the state space Sn. Let π be

the uniform distribution on Sn, representing a well-shuffled deck. Suppose that you
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know the first card is c. Then your knowledge is represented by µ, the distribution

that is uniform on all permutations σ with σ(c) = 1. Then, by (2.27),

‖µ− π‖TV = (n− 1)! ·
[

1

(n− 1)!
− 1

n!

]
+ (n!− (n− 1)!) · 1

n!
= 1− 1

n
.

The following describes some key properties of the total variation distance.

Proposition 2.21. Let µ and ν be two distributions on the finite state space Ω. Let P

be the transition matrix of a Markov chain with stationary distribution π. Then

(i) The total variation distance is non-decreasing when the chain advances:

‖µP − νP‖TV ≤ ‖µ− ν‖TV . (2.33)

(ii) The total variation distance is convex:

∥∥µP t − π∥∥
TV
≤
∑
x∈Ω

µ(x)
∥∥P t(x, ·)− π∥∥

TV
. (2.34)

Proof. (i) By using (2.27),

‖µP − νP‖TV =
1

2

∑
x∈Ω

|µP (x)− νP (x)| = 1

2

∑
x∈Ω

∣∣∣∣∣∣
∑
y∈Ω

[µ(y)P (y, x)− ν(y)P (y, x)]

∣∣∣∣∣∣ .
Using the triangle inequality and interchanging the (finite) sum shows that

‖µP − νP‖TV ≤
1

2

∑
y∈Ω

|µ(y)− ν(y)|
∑
x∈Ω

P (y, x).

This upper bound is equal to 1
2

∑
y∈Ω |µ(y)− ν(y)| = ‖µ− ν‖TV, since P is stochastic.

(ii) Since µ is a distribution,
∑

y∈Ω µ(y) = 1. Hence,

∥∥µP t − π∥∥
TV

=
1

2

∑
x∈Ω

|µP t(x)− π(x)| = 1

2

∑
x∈Ω

∣∣∣∣∣∣
∑
y∈Ω

µ(y)[P t(y, x)− π(x)]

∣∣∣∣∣∣ .
Using the triangle inequality, and interchanging the sum again, shows that

∥∥µP t − π∥∥
TV
≤ 1

2

∑
y∈Ω

µ(y)
∑
x∈Ω

|P t(y, x)− π(x)| =
∑
y∈Ω

µ(y)
∥∥P t(y, ·)− π∥∥

TV
,

as desired.
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Corollary 2.22. Assume that the same conditions as Proposition 2.21 hold.

(i) The function d(t) = maxx∈Ω

∥∥P t(x, ·)− π∥∥
TV

from (2.25) is monotone decreasing:

d(t+ 1) ≤ d(t). (2.35)

In other words, the chain only moves closer to stationarity as time passes.

(ii) Let µ be any arbitrary starting distribution. Then

∥∥µP t − π∥∥
TV
≤ max

x∈Ω

∥∥P t(x, ·)− π∥∥
TV

= d(t).

In other words, the distance to stationarity is maximised when the starting distri-

bution is concentrated at a single point. Hence, it suffices to bound d(t).

Proof. (i) Fix x ∈ Ω and t ∈ N. Recall that π is stationary for P t (Lemma 2.9 (ii)). By

taking the starting distribution to be the point mass µ = δx, Proposition 2.21 (i) implies

that ∥∥P t+1(x, ·)− π
∥∥

TV
≤
∥∥P t(x, ·)− π∥∥

TV
.

Since this holds for all x ∈ Ω,

max
x∈Ω

∥∥P t+1(x, ·)− π
∥∥

TV
≤ max

x∈Ω

∥∥P t(x, ·)− π∥∥
TV

.

Hence, d(t+ 1) ≤ d(t), as claimed.

(ii) Since
∑

x∈Ω µ(x) = 1, this is an immediate consequence of Proposition 2.21 (ii)

by taking the maximum of
∥∥P t(x, ·)− π∥∥

TV
over all x ∈ Ω.

Recall d(t) = maxx∈Ω

∥∥P t(x, ·)− π∥∥
TV

and d(t) = maxx,y∈Ω

∥∥P t(x, ·)− P t(y, ·)∥∥
TV

from (2.25) and (2.26). The next lemma establishes a relationship between d(t) and d(t).

This will be useful since d(t) is naturally compatible with the coupling technique, which

is discussed in Section 3.1.

Lemma 2.23. The functions d(t) and d(t) satisfy

d(t) ≤ d(t) ≤ 2d(t), t ∈ N. (2.36)

Proof. Using the triangle inequality shows that∑
z∈Ω

|P t(x, z)− P t(y, z)| ≤
∑
z∈Ω

|P t(x, z)− π(z)|+
∑
z∈Ω

|P t(y, z)− π(z)|.

Dividing both sides by 1
2 , and taking the maximum over x, y ∈ Ω, implies that d(t) ≤ 2d(t).

Next, fix x ∈ Ω. Recall that π = πP t, or equivalently π(z) =
∑

y∈Ω π(y)P t(y, z) for

any z ∈ Ω. Using this property, and the triangle inequality,

∥∥P t(x, ·)− π∥∥
TV

=
1

2

∑
z∈Ω

|P t(x, z)− π(z)| ≤ 1

2

∑
z∈Ω

∑
y∈Ω

π(y)|P t(x, z)− P t(y, z)|.
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By interchanging the sum, the right hand side is further upper bounded by∑
y∈Ω

π(y)
∥∥P t(x, ·)− P t(y, ·)∥∥

TV
≤ max

y∈Ω

∥∥P t(x, ·)− P t(y, ·)∥∥
TV

.

This inequality follows from upper bounding the total variation distance by the maximum

over y, and then using
∑

y∈Ω π(y) = 1. Next, taking the maximum over x shows that

d(t) ≤ d(t), as desired.

Remark 2.24. The total variation distance is the most widely used in the literature, and

will be used in the rest of this thesis. We will mention some other reasonable distances. In

practice, they are similar in that if one distance is close, then they all tend to be close [13,

Section 6]. Some techniques may be naturally compatible with certain distances.

(i) The Lp (1 ≤ p <∞) distance is the usual Lp norm induced by π:∥∥∥∥P t(x, ·)µ
− 1

∥∥∥∥p
p,π

:=
∑
y∈Ω

∣∣∣∣P t(x, y)

µ(y)
− 1

∣∣∣∣p π(y). (2.37)

Here 1 denotes the function that is one for all x ∈ Ω. This measures the relative

density P t(x, ·)/π, which converges to one as t→∞. When p = 1, this leads to the

usual total variation distance:

∥∥P t(x, ·)− π∥∥
TV

=
1

2

∥∥∥∥P t(x, ·)µ
− 1

∥∥∥∥
1,π

.

When p = 2, this is the χ2 distance (or equivalently, this is Varπ(P t(x, ·)/π)):

χ(P t(x, ·), π) =
∑
y∈Ω

(P t(x, y)− π(y))2

π(y)
=

∥∥∥∥P t(x, ·)µ
− 1

∥∥∥∥2

2,π

.

These are discussed further in [46], which focuses more on analytic techniques. In

particular, the L2 distance is used more extensively (which provides an upper bound

for the total variation distance by the Cauchy-Schwarz inequality).

(ii) The separation distance (introduced in [2]):

sep(P t(x, ·), π) := max
y∈Ω

(
1− P t(x, y)

π(y)

)
. (2.38)

Note that this is not symmetric, and hence not a metric. Another example of use is

in [15]. This is related to the concept of strong stationary times, which is the topic

of Section 3.3.

Definition 2.25. The total variation distance will be used to measure the rate of conver-

gence towards stationarity. We define tmix(ε) := min{t ∈ N : d(t) ≤ ε} to be the mixing

time of a Markov chain, with tolerance 0 < ε ≤ 1. When the argument is omitted, we

take ε = 1/4 by convention, and write tmix := tmix(1/4).
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The following lemma will be proved in Section 3.1 after coupling is introduced.

Lemma 2.26. The function d(t), defined in (2.26), is submultiplicative.

d(s+ t) ≤ d(s) d(t), for all s, t ∈ N. (2.39)

Corollary 2.27. Let `, t ∈ N. Then

(i) d(`t) ≤ d(`t) ≤ d(t)`;

(ii) d(`tmix(ε)) ≤ (2ε)`;

(iii) d(`tmix) ≤ 2−`.

Proof. (i) is an immediate consequence of Lemma 2.23 and Lemma 2.26. (ii) follows from

(i) with t = tmix(ε), recalling that d(tmix(ε)) ≤ 2d(tmix(ε)) ≤ 2ε. Finally, (iii) follows from

(ii) by taking ε = 1/4.

Remark 2.28. Let ε > 0. By setting 2−` = ε, which is equivalent to ` = log2(ε−1),

Corollary 2.27 (iii) implies that tmix(ε) ≤ dlog2(ε−1)e tmix. Therefore, while the choice of

ε = 1/4 in the definition of the mixing time is mostly arbitrary, a good bound on tmix

translates to a good bound on tmix(ε).

To conclude this section, we will show that the mixing time of a random walk on a

group (defined in Remark 2.7) is independent of the starting state because of symmetry.

Lemma 2.29. Consider a random walk on a group G with increment distribution µ,

which has uniform stationary distribution π. Then for any g, h ∈ G,

∥∥P t(g, ·)− π∥∥
TV

=
∥∥P t(h, ·)− π∥∥

TV
.

Therefore, d(t) =
∥∥P t(id, ·)− π∥∥

TV
, where id is the identity element of G.

Proof. Fix g, h ∈ G. For x ∈ G, consider P t(g, x) and P t(h, xg−1h). To get from g to

x in t steps means that we can write ztzt−1 · · · z1g = x, where zi ∈ G. By multiplying

both sides on the right by g−1y, this is equivalent to ztzt−1 · · · z1h = xg−1h. Both events

have probability µ(z1) · · ·µ(zt), and the sum of the probabilities of all such events by

varying the symbols z1, . . . , zt gives P t(g, x) and P t(h, xg−1h) respectively. Thus, these

two probabilities are the same, and we can write

1

2

∑
x∈G

∣∣∣∣P t(g, x)− 1

|Ω|

∣∣∣∣ =
1

2

∑
x∈G

∣∣∣∣P t(h, xg−1h)− 1

|Ω|

∣∣∣∣ =
1

2

∑
x̃∈G

∣∣∣∣P t(h, x̃)− 1

|Ω|

∣∣∣∣ ,
where we relabelled x̃ = xg−1h in the last sum. By Proposition 2.19 (i), this shows that

the two total variation distances are equal, as claimed.
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Chapter 3

Probabilistic Techniques for Analysing Mixing Times

From now on, all Markov chains considered will be irreducible and aperiodic unless oth-

erwise specified. The previous chapter showed that such a chain will converge to a unique

stationary distribution. We will now analyse the rate of convergence towards stationarity.

The analysis of mixing times is an area of much recent work and developments. In

this chapter, we will describe the probabilistic methods of coupling (Section 3.1), path

coupling (Section 3.2), and strong stationary times (Section 3.3) that have been used.

The next chapter will focus on analytical methods.

The main reference for these two chapters remains the textbook by Levin, Peres and

Wilmer [38]. For an extensive treatise on reversible Markov chains, see [4]. For references

to some other techniques beyond the scope of this thesis, see [12] (group representations),

and [46, 52] (analytical tools).

3.1 Coupling

This section will describe a probabilistic technique, called coupling, that can be used to

bound the total variation distance. This is a powerful tool that is useful in more general

situations than considered in this thesis (e.g. see [39] for broader applications within

probability theory, and [50] for its application to chains with uncountable state spaces).

An interesting application of coupling is the coupling from the past method of Propp

and Wilson [49, 48], although its details remain beyond the scope of this thesis. This

algorithm allows for exact samples to be drawn from the stationary distribution, which

separates the quality of output from the issue of efficiency.

Definition 3.1. (i) A coupling of two probability distributions µ and ν is a pair of

random variables (X,Y ) defined on a common probability space, which has marginal

distributions µ and ν respectively.

(ii) A coupling of two stochastic processes (Z
(1)
t )t∈N and (Z

(2)
t )t∈N is a stochastic process

(Xt, Yt)t∈N defined on a common probability space, such that (Xt) and (Yt) are

faithful copies of (Z
(1)
t ) and (Z

(2)
t ) respectively. Moreover, we assume that (Xt) and

(Yt) agree after they meet (or coalesce), by satisfying the coupling condition:

if Xs = Ys, then Xt = Yt for t ≥ s. (3.1)

If (Z
(1)
t )t∈N and (Z

(2)
t )t∈N are copies of a Markov chain with transition matrix P

starting at x and y respectively, then we call this a coupling of Markov chains. We
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write Pxy to denote the dependence of the coupling on the starting states. Note that this

definition can naturally be generalised for the coupling of more than two processes.

Proposition 3.2. Let µ and ν be two probability distributions on a finite state space Ω.

Then

‖µ− ν‖TV = inf
{
P (X 6= Y ) : (X,Y ) is a coupling of µ and ν

}
. (3.2)

Moreover, there exists an optimal coupling (X,Y ), such that ‖µ− ν‖TV = P (X 6= Y ).

Proof. Let (X,Y ) be any coupling of µ and ν, and let A ⊆ Ω. Note that P (X ∈ A) can

be decomposed into P (X ∈ A, Y ∈ A) + P (X ∈ A, Y /∈ A). Similarly, P (Y ∈ A) can be

decomposed into P (X ∈ A, Y ∈ A) + P (X /∈ A, Y ∈ A). Therefore,

µ(A)− ν(A) = P (X ∈ A)− P (Y ∈ A) ≤ P (X ∈ A, Y /∈ A) ≤ P (X 6= Y ) .

Similarly, ν(A) − µ(A) ≤ P (X 6= Y ), and so |µ(A) − ν(A)| ≤ P (X 6= Y ). By taking the

maximum over all A ⊆ Ω (recalling the definition of the total variation distance (2.24)),

‖µ− ν‖TV ≤ inf{P (X 6= Y ) : (X,Y ) is a coupling of µ and ν}.

Next, we will construct an optimal coupling (which is possible since Ω is finite). The goal

is to force X = Y as often as possible, whilst ensuring that their marginal distributions

are correct. Recall that from (2.31),

‖µ− ν‖TV =
∑
x∈Ω

µ(x)>ν(x)

[µ(x)− ν(x)] =
∑
x∈Ω

µ(x)<ν(x)

[ν(x)− µ(x)]. (3.3)

Consider the total probability mass common to µ and ν, which is equal to∑
x∈Ω

min{µ(x), ν(x)} =
∑
x∈Ω

µ(x)=ν(x)

µ(x) +
∑
x∈Ω

µ(x)>ν(x)

ν(x) +
∑
x∈Ω

ν(x)>µ(x)

µ(x)

= 1−
∑
x∈Ω

µ(x)>ν(x)

(µ(x)− ν(x)) = 1− ‖µ− ν‖TV .

Here
∑

x∈Ω µ(x) = 1 and (3.3) were used for the second and last equalities respectively.

We will now define an optimal coupling (X,Y ). With probability p := 1−‖µ− ν‖TV,

set X = Y = z together, with probability

γXY (z) =
min{µ(z), ν(z)}

p
, z ∈ Ω.

With probability 1− p, set X = z and Y = z′ independently, with probabilities

γX(z) =
max{µ(z)− ν(z), 0}

1− p
, γY (z′) =

max{ν(z′)− µ(z′), 0}
1− p

, z, z′ ∈ Ω,
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respectively. In this case, the probability that X and Y are equal is zero since their

common probability mass is exhausted. By construction,
∑

x∈Ω γXY (x) = 1, and (3.3)

shows that
∑

x∈Ω γX(x) =
∑

y∈Ω γY (y) = 1. Hence, this is a valid joint distribution as∑
x,y∈Ω

P (X = x, Y = y) = p
∑
x∈Ω

γXY (x) + (1− p)
∑
x∈Ω

γX(x)
∑
y∈Ω

γY (y) = 1.

Moreover, P (X = x) = p γXY (x) + (1− p) γX(x) = µ(x) shows that the marginal distri-

bution for X is correct (and similarly for Y ). Therefore, this is an optimal coupling such

that P (X 6= Y ) = 1− p = ‖µ− ν‖TV.

The following important theorem allows us to bound the mixing time by the time it

takes for a coupling of two copies of the chain to coalesce.

Theorem 3.3 (Coupling theorem). Let (Xt, Yt)t∈N be a coupling of Markov chains with

finite state space Ω, and irreducible, aperiodic transition matrix P . Define the coupling

time to be the first time that the two chains coalesce:

τcouple := min{t ∈ N : Xt = Yt}. (3.4)

Suppose that X0 = x and Y0 = y. Then

(i)
∥∥P t(x, ·)− P t(y, ·)∥∥

TV
≤ Pxy (τcouple > t) ;

(ii) d(t) ≤ max
x,y∈Ω

Pxy (τcouple > t) .

Proof. (i) For any t ∈ N, note that (Xt, Yt) is a coupling of P t(x, ·) and P t(y, ·). Recall

that any coupling remains together after the coupling time from (3.1). Therefore, the

event {Xt 6= Yt} is equal to {τcouple > t}. By Proposition 3.2,

∥∥P t(x, ·)− P t(y, ·)∥∥
TV
≤ Pxy (Xt 6= Yt) = Pxy (τcouple > t) .

(ii) This follows from combining d(t) ≤ d(t) from Lemma 2.23 with (i).

Recall that Lemma 2.26 asserted that d(t) = maxx,y∈Ω

∥∥P t(x, ·)− P t(y, ·)∥∥
TV

is sub-

multiplicative, i.e. d(s+ t) ≤ d(s)d(t). We can now prove this using coupling.

Proof of Lemma 2.26. Let s, t ∈ N. Fix x, y ∈ Ω. By Proposition 3.2, we can consider an

optimal coupling of P s(x, ·) and P s(y, ·), such that

‖P s(x, ·)− P s(y, ·)‖TV = Pxy (Xs 6= Ys) . (3.5)

From time s onwards, run the two copies of the Markov chain independently, until the

two chains coalesce. The distribution of (Xt)t∈N at time s+ t is, for all w ∈ Ω,

P s+t(x,w) =
∑
z∈Ω

P s(x, z)P t(z, w) =
∑
z∈Ω

Px (Xs = z)P t(z, w) = Exy
[
P t(Xs, w)

]
.
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Similarly, the distribution of (Yt)t∈N at time s+ t is P s+t(y, w) = Exy
[
P t(Xs, w)

]
. There-

fore, we can use the linearity of the expectation to write

P s+t(x,w)− P s+t(y, w) = Exy
[
P t(Xs, w)− P t(Ys, w)

]
.

By summing over all states and using (2.27), it follows that

∥∥P s+t(x, ·)− P s+t(y, ·)∥∥
TV

=
1

2

∑
w∈Ω

|Exy
[
P t(Xs, w)− P t(Ys, w)

]
|.

Since the absolute value of the expectation of a random variable is less than or equal to

the expectation of the absolute value of the random variable, this is upper bounded by

Exy

[
1

2

∑
w∈Ω

|P t(Xs, w)− P t(Ys, w)|

]
= Exy

[ ∥∥P t(Xs, ·)− P t(Ys, ·)
∥∥

TV

]
.

If Xs = Ys, then the two chains move together by the coupling condition (3.1), and thus

the right hand side is zero. If Xs 6= Ys, the total variation distance inside the expectation

is bounded from above by its maximum over all possible Xs, Ys, which is d(t). Hence,

∥∥P s+t(x, ·)− P s+t(y, ·)∥∥
TV
≤ Exy

[
d(t)1{Xs 6=Ys}

]
= d(t)P (Xs 6= Ys)

Since (Xs, Ys) is an optimal coupling, by (3.5),

∥∥P s+t(x, ·)− P s+t(y, ·)∥∥
TV
≤ d(t) ‖P s(x, ·)− P s(y, ·)‖TV .

Taking the maximum over x, y ∈ Ω shows that d(s+ t) ≤ d(s) d(t), as desired.

Next, we will provide some examples of how the coupling technique can be used to

obtain upper bounds for mixing times.

Example 3.4 (Random walk on the cycle). Let n ∈ Z+ with n ≥ 2. Consider a ran-

dom walk on the group Z/nZ, or n-cycle, where Ω = {0, 1, . . . , n − 1}, as illustrated in

Figure 3.1.1. At each step, the chain moves to one of its neighbours uniformly at random.

Note that if n is even, then the chain has period two. Hence, we will consider the lazy

version instead, where self-loops are added such that P (x, x) = 1/2 for all x ∈ Ω. The

other transition probabilities are given by P (x, y) = 1/4 if |x− y| ≡ 1 (modn), and zero

otherwise. Since this is a (reversible) random walk on a group, the uniform distribution

π given by π(g) = 1
n , g ∈ G is the stationary distribution, by Remark 2.7.

Consider the following coupling (Xt, Yt)t∈N of two copies of the chain started at x and

y respectively. With probability 1/2, Xt chooses to move to the left or right with uniform

probability, and Yt remains at its current state. Otherwise, Yt moves and Xt remains.

Consider the process (Dt)t∈N, such that Dt counts the clockwise distance between Xt

and Yt. This is also a Markov chain that takes values in {0, 1, 2, . . . , n}. By the coupling
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Figure 3.1.1: A random walk on the n-cycle (here n = 9). The shaded vertices
correspond to the set A in Example 3.5.

condition (3.1), Dt is absorbed when it reaches 0 or n. Moreover, the coupling time τcouple

is exactly the first time that Dt is absorbed. If 0 < Dt < n, then it increases or decreases

by one at each step with equal probability 1/2.

The coupling argument allows for Dt to be analysed instead. This reduces to the well-

known Gambler’s Ruin problem: starting with “wealth” d := |x − y| (assuming Xt ≥ Yt

without loss of generality), a gambler wins or loses with equal probability, until they are

either ruined (Dt = 0), or leave (Dt = n). This problem has been well-studied by the

method of linear recurrence relations in [24, Chapter XIV, Section 3]. In particular, the

expected duration of the game is d(n− d). Note that maxx,y∈Ω d(n− d) ≤ n2

4 .

Thus, combining the coupling theorem (Theorem 3.3 (ii)) and Markov’s inequality

(Theorem 1.1) shows that

d(t) ≤ max
x,y∈Ω

Pxy (τcouple > t) ≤ max
x,y∈Ω

Exy [τcouple]

t
=
n2

4t
.

Hence tmix ≤ n2, so that tmix = O(n2).

Example 3.5 (Random walk on the cycle II). We will provide a matching lower bound

for Example 3.4, by showing that the mixing time of a lazy random walk on the n-cycle

satisfies tmix ≥ bcn2c for some constant c > 0. Assume that n ≥ 4 to avoid trivialities.

Coupling is not used to find this lower bound. Instead, the idea is to use the definition

of the total variation distance (2.24), and to choose a particular set A ⊂ Ω and starting

state x0 ∈ Ω such that |P t(x0, A) − π(A)| is large. Define A = {dn4 e, d
n
4 e + 1, . . . , b3n

4 c},
which has at least bn2 c elements (see the previous Figure 3.1.1). Hence, under the sta-

tionary distribution, the probability that the random walk is in A is

π(A) =
∑
x∈A

1

n
≥ 1

n
·
⌊n

2

⌋
≥ 1

n
· n− 1

2
=

1

2
− 1

2n
.

Let (Xt)t∈N be a lazy random walk on the n-cycle starting at 0. Consider the process

(Zt)t∈N, which counts the net clockwise steps made by Xt. Both chains remain still to-

gether, and when Xt moves clockwise (resp. anti-clockwise), Zt increases (resp. decreases)
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by 1. Thus, Zt is a lazy random walk on Z, which can be written Zt =
∑t

s=1 Ys, where

each Ys is an independent and identically distributed increment, taking value 0 w.p. 1/2,

and values −1 or 1 w.p. 1/4 each. Hence, E0 [Zt] = 0, and Var0(Zt) = t
2 .

Note that b3n
4 c−n = −dn4 e. Therefore, if Xt is in A, then the net number of clockwise

(or anti-clockwise) steps it has taken must necessarily be at least dn4 e. Hence,

P t(0, A) ≤ P0

(
|Zt| ≥

⌈n
4

⌉)
. (3.6)

By Chebyshev’s inequality (Theorem 1.2),

P0

(
|Zt| ≥

⌈n
4

⌉)
≤ t

2dn/4e2
≤ 8t

n2
. (3.7)

Therefore, if t ≤ bn2

32 −
n
16c, (3.6) and (3.7) show that P t(0, A) ≤ 1

4 −
1

2n . Hence,

d(t) ≥ π(A)− P t(0, A) ≥ 1

2
− 1

2n
− 1

4
+

1

2n
=

1

4
.

Hence, tmix ≥ bn
2

32 −
n
16c. Since n ≥ 4, n

16 ≤
n2

64 , and so this bound can be simplified to

tmix ≥ bn
2

64 c (which, in fact, holds for all n ∈ Z+).

Example 3.6 (Random walk on the hypercube). Let n ∈ Z+ with n ≥ 2. Consider a

random walk on Ω = (Z/2Z)n, which is the set of all bitstrings (i.e. sequences of 0s and

1s) of length n. The chain moves between the 2n vertices of the n-dimensional hypercube

by choosing uniformly at random from its neighbours at each step (see Figure 3.1.2).

000 100

110010

001 101

111011

Figure 3.1.2: A random walk on the n-dimensional hypercube (here n = 3).

Note that this chain has period two, since each move flips the parity of the sum

of the bits of the current state. Hence, we will consider the lazy version instead, with

P (x,x) = 1/2, x ∈ Ω. The other transition probabilities are given by P (x,y) = 1/(2n) if

x and y differ by exactly one bit, and zero otherwise. As a random walk on a group, the

stationary distribution is the uniform distribution π(x) = 2−n, x ∈ Ω, by Remark 2.7.

Consider the following coupling (Xt, Yt)t∈N of two copies of the chain, started at x and

y respectively. Choose one of the n bits uniformly at random, and change it to either 0

or 1 with equal probability for both chains. Individually, each chain moves to an adjacent
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vertex if the selected bit is changed with probability 1
2n , and otherwise remains still with

probability n× 1
2n = 1

2 . Hence, the marginals are correct.

Observe that once a bit is selected, both chains will agree on that particular bit going

forwards by the coupling condition (3.1). This reduces to the classical Coupon Collector’s

problem, where selecting a bit is the same as “collecting a coupon”. (This is extensively

studied in Feller [24].) Let τcoupon be the time it takes for all n bits to have been selected at

least once. Since coalescence is guaranteed at time τcoupon, it follows that τcouple ≤ τcoupon,

and hence Pxy (τcouple > t) ≤ Pxy (τcoupon > t).

Let Bi denote the event that the ith bit has not been selected by time t. Since the

time for the ith bit to be selected is geometrically distributed, P (Bi) =
(
1− 1

n

)t
. Let

t = dn log n+ cne, where c is a fixed real number. Then by the simple union bound,

Pxy (τcoupon > t) = P

(
n⋃
i=1

Bi

)
≤

n∑
i=1

P (Bi) = n

(
1− 1

n

)t
≤ ne−

t
n = e−c. (3.8)

Therefore, d(t) ≤ e−c by the coupling theorem (Theorem 3.3 (ii)). If c = log 4, then

d(t) ≤ 1
4 . Hence, tmix ≤ dn log n+ n log 4e, so that tmix = O(n log n).

It is shown in [23] that the asymptotic distribution of τcoupon is

lim
n→∞

P (τcouple > n log n+ cn) = 1− exp(−e−c), c ∈ R. (3.9)

If c is not small, then exp(−e−c) ≈ 1−e−c. Thus, the upper bound in (3.8) is quite sharp.

3.2 Path coupling

In this section, we discuss an extension of the coupling technique. The idea is to abstract

away from considering all pairs of states in achieving a coupling bound, and instead only

consider pairs of states that are adjacent in some path. This minimises the combinatorial

complexity, and has led to better bounds in some cases.

Path coupling was first introduced by Bubley and Dyer [7] to show that several chains

involved in hard combinatorial problems are rapidly mixing. The main result of this

section is the path coupling theorem (Theorem 3.12). A fascinating connection to the

transportation metric will be uncovered in developing the theory, following [38]

Definition 3.7. Suppose that Ω is equipped with a metric ρ. The transportation

metric (also known as the Wasserstein distance) between two distributions µ and ν

on Ω is

Wρ(µ, ν) := inf
{
E [ρ(X,Y )] : (X,Y ) is a coupling of µ and ν

}
. (3.10)

This allows a metric on Ω to be lifted to distributions on Ω. Equivalently, it can be

written in terms of the distribution functions of the associated random variables:

Wρ(µ, ν) = inf
φ

 ∑
(x,y)∈Ω×Ω

ρ(x, y)φ(x, y) : q1(φ) = µ, q2(φ) = ν

 . (3.11)

27



The infimum is taken over all joint distributions φ on Ω × Ω. The function q1 (resp.

q2), where q1(φ) = φ(·,Ω) =
∑

y∈Ω φ(·, y), is the projection onto the first (resp. second)

coordinate. (These correspond to the marginals of X and Y .)

Remark 3.8. (i) Why is this known as the transportation metric? Suppose that Ω

represents “locations”, and ρ represents the “costs” of moving resources from one

site to another. The distributions of the starting and ending resources in each site

are represented by µ and ν respectively. Thus, a coupling is a particular strategy of

transporting the resources, and the transportation metric gives the minimal cost.

(ii) Suppose that ρ is the discrete metric: ρ(x, y) = 1{x 6=y}. Then, recalling (3.2),

Wρ(µ, ν) = inf
{
P (X 6= Y ) : (X,Y ) is a coupling of µ and ν

}
= ‖µ− ν‖TV. Thus,

the transportation metric generalises the total variation distance.

Lemma 3.9. (i) Let µ, ν be distributions on Ω. Then there exists an optimal coupling

(X∗, Y∗) of µ and ν such that E [ρ(X∗, Y∗)] = Wρ(µ, ν).

(ii) The transportation metric is a metric on the space of probability distributions on Ω.

Proof. (i) Some classical results from analysis will be assumed for this proof (see [51] for

a classical reference). In this part, we will identify each distribution on Ω × Ω with a

point in the following probability simplex in R|Ω|2 (a (|Ω|2 − 1)-dimensional polytope):

A =

(xij)
|Ω|
i,j=1 ∈ R|Ω|

2
:

|Ω|∑
i,j=1

xij = 1, xij ≥ 0 for all 1 ≤ i, j ≤ |Ω|

 .

This is a closed and bounded subset of R|Ω|2 , and hence it is compact by the Heine-Borel

Theorem. The projection onto the first coordinate corresponds to q1 : R|Ω|2 → R|Ω|,
(xij)

|Ω|
i,j=1 7→ (

∑|Ω|
j=1 xij)

|Ω|
i=1. As the sum of continuous projections from R|Ω|2 to R|Ω|, q1 is

continuous. Similarly, the projection onto the second coordinate q2 is continuous.

Let B be the set of distributions on Ω× Ω that project down to µ and ν on the first

and second coordinates. Then B is a closed subset of A, since it is the intersection of the

closed sets q−1
1 ({µ}) and q−1

2 ({ν})), and hence it is also compact. Note that the following

function is continuous (as the sum of projections from R|Ω|2 to R multiplied by scalars):

B → R, φ 7→
∑

(x,y)∈Ω×Ω

ρ(x, y)φ(x, y).

Therefore, by the Extreme Value Theorem, there exists a distribution φ∗ that achieves

the infimum in (3.11). This corresponds to an optimal coupling (X∗, Y∗).

(ii) The symmetry of Wρ follows clearly from the symmetry of ρ. Next, we show that

Wρ is positive definite. If µ = ν, then we can construct the coupling with distribution

function φ(x, x) = µ(x) = ν(x) for all x ∈ Ω, and φ(x, y) = 0 for all x 6= y. Thus

E [ρ(X,Y )] =
∑

x∈Ω ρ(x, x)φ(x, x) = 0, and so Wρ(µ, ν) = 0.
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Conversely, suppose thatWρ(µ, ν) = 0. From (i), we can choose an optimal coupling φ∗

of µ and ν. Then
∑

x∈Ω

∑
y∈Ω ρ(x, y)φ∗(x, y) = 0, which implies that ρ(x, y)φ∗(x, y) = 0

for all x, y ∈ Ω. If φ∗(x, y) > 0, then ρ(x, y) = 0 and hence x = y. Thus, φ∗(x, y) = 0

for all x 6= y. Therefore, since φ∗ projects to µ and ν on its first and seconds coordinates

respectively, µ(x) =
∑

y∈Ω φ(x, y) = φ(x, x) =
∑

z∈Ω φ(z, x) = ν(x), and so µ = ν.

Finally, it remains to show that the triangle inequality holds. Let µ, ν and η be

distributions on Ω. From (i), let (X,Z) be an optimal coupling of µ and η with joint

distribution φ, and let (Y,Z) be an optimal coupling of η and ν with joint distribution

ψ. Let

r(x, y, z) :=
φ(x, z)ψ(y, z)

η(z)
.

This is in fact a joint distribution function of (X,Y, Z). Moreover, r projects onto φ on

its first and third coordinates (i.e. (X,Z)), which can be checked by calculating

∑
y∈Ω

r(x, y, z) =
φ(x, z)

η(z)

∑
y∈Ω

ξ(y, z) =
φ(x, z)

η(z)
η(z) = φ(x, z).

Similarly, r projects onto ψ on its second and third coordinates (i.e. (Y, Z)). Its projection

onto its first and second coordinates is a coupling of µ and ν, which we denote by (X,Y ).

Recall that Wρ is defined as an infimum (3.10). Hence, taking expectations with re-

spect to r implies that Wρ(µ, ν) ≤ E [ρ(X,Y )]. Moreover, recall that (X,Z) and (Y,Z)

are optimal couplings. By using the triangle inequality for ρ, and the linearity of expec-

tations,

E [ρ(X,Y )] ≤ E [ρ(X,Z)] + E [ρ(Y,Z)] = Wρ(µ, η) +Wρ(η, ν). (3.12)

Hence, we conclude that Wρ(µ, ν) ≤Wρ(µ, η) +Wρ(η, ν), as desired.

Let G = (Ω, E) be a connected graph on the state space Ω of a Markov chain. The

adjacent states in this graph are not necessarily the same as the permissible transitions

of the chain, however they usually are. Let ` be a length function that assigns length

`(x, y) ≥ 1 to each edge {x, y} ∈ E, and `(x, x) := 0.

Definition 3.10. Define a path ξ from x to y to be a sequence x = x0, x1, . . . , xr = y of

states, such that {xi−1, xi} is an edge for i = 1, 2, . . . , r. The length of the path is defined

to be
∑r

i=1 `(xi−1, xi). (The length of a path from x to x is defined to be `(x, x) = 0.)

Then the path metric on Ω is defined by

ρ(x, y) = min
{

length(ξ) : ξ is a path from x to y
}
. (3.13)

It is not too difficult to check that this is indeed a metric on Ω.

The transportation metric allows the path metric ρ to be lifted as a metric Wρ on the

space of distributions on Ω. The next lemma connects Wρ to the total variation distance.
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Lemma 3.11. Let ρ be the path metric on Ω. Then for any distributions µ and ν on Ω,

‖µ− ν‖TV ≤Wρ(µ, ν). (3.14)

Proof. Since `(x, y) ≥ 1 for x 6= y, it follows that ρ(x, y) ≥ 1{x 6=y} for all x, y ∈ Ω. Let

(X,Y ) be an optimal coupling of µ and ν for Wρ by Lemma 3.9. Then

P (X 6= Y ) = E
[
1{X 6=Y }

]
≤ E [ρ(X,Y )] = Wρ(µ, ν).

Since ‖µ− ν‖TV ≤ P (X 6= Y ) from (3.2), we are done.

Theorem 3.12 (Path coupling theorem). Consider a Markov chain with transition matrix

P , and finite state space Ω with associated graph G = (Ω, E). Let ρ be the path metric

defined in (3.13). Suppose that for each edge {x, y} ∈ E, there exists a coupling (X,Y )

of the distributions P (x, ·) and P (y, ·) that satisfies the “contraction condition”

Exy [ρ(X,Y )] ≤ e−αρ(x, y), (3.15)

for some α > 0. Then for any two probability distributions µ and ν on Ω,

Wρ(µP, νP ) ≤ e−αWρ(µ, ν). (3.16)

Proof. Fix arbitrary states x, y ∈ Ω. Let x = x0, x1, . . . , xr = y be a path of minimum

length joining x and y. Then {xi−1, xi} ∈ E for i = 1, 2, . . . , r, and
∑r

i=1 `(xi−1, xi) =

ρ(x, y). By the triangle inequality (Lemma 3.9) and the contraction assumption (3.15),

Wρ(P (x, ·), P (y, ·)) ≤
r∑
i=1

Wρ(P (xi−1, ·), P (xi, ·)) ≤ e−α
r∑
i=1

`(xi−1, xi) = e−αρ(x, y).

(3.17)

Thus, (3.16) holds for the special case of µ = δx, ν = δy. For each x, y ∈ Ω, by Lemma 3.9,

we can find an optimal coupling θxy of P (x, ·) and P (y, ·), such that

Wρ(P (x, ·), P (y, ·)) =
∑
u,v∈Ω

ρ(u, v)θxy(u, v). (3.18)

Similarly, we can find an optimal coupling φ of the two distributions µ and ν, such that

Wρ(µ, ν) =
∑
x,y∈Ω

ρ(x, y)φ(x, y). (3.19)

Now, we claim that the following is a coupling of µP and νP :

θ =
∑
x,y∈Ω

φ(x, y)θxy. (3.20)
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We can check that the projection of θ onto the first coordinate is µP . Recall that the

projection of θxy onto the first coordinate is P (x, ·), and that the projection of φ onto the

first coordinate is µ. Hence, interchanging the order of summation shows that

∑
v∈Ω

θ(u, v) =
∑
x,y∈Ω

φ(x, y)

(∑
v∈Ω

θxy(u, v)

)
=
∑
x,y∈Ω

φ(x, y)P (x, u)

=
∑
x∈Ω

∑
y∈Ω

φ(x, y)

P (x, u) =
∑
x∈Ω

µ(x)P (x, u) = µP (u).

A similar calculation shows that the projection of θ onto the second coordinate is νP .

Thus, θ is indeed a coupling of µP and νP . Therefore, by (3.10),

Wρ(µP, νP ) ≤
∑
u,v∈Ω

ρ(u, v)θ(u, v). (3.21)

By putting in the definition of θ from (3.20), interchanging the order of summation,

and using (3.18), the right hand side of (3.21) is equal to

∑
x,y∈Ω

 ∑
u,v∈Ω

ρ(u, v)θxy(u, v)

φ(x, y) =
∑
x,y∈Ω

Wρ(P (x, ·), P (y, ·))φ(x, y).

Finally, using (3.17), and then (3.19), shows that this upper bound for Wρ(µP, νP ) is less

than or equal to

e−α
∑
x,y∈Ω

ρ(x, y)φ(x, y) = e−αWρ(µ, ν).

Hence, Wρ(µP, νP ) ≤ e−αWρ(µ, ν), as desired.

Corollary 3.13. Assume that the same conditions as Theorem 3.12 hold. Suppose that

the Markov chain has stationary distribution π. Let the diameter of the associated graph

be diam(Ω) := maxx,y∈Ω ρ(x, y). Then

d(t) = max
x∈Ω

∥∥P t(x, ·)− π∥∥
TV
≤ e−αtdiam(Ω). (3.22)

Consequently,

tmix(ε) ≤

⌈
1

α

(
log(diam(Ω)) + log(ε−1)

)⌉
. (3.23)

Proof. By iterating the path coupling theorem (Theorem 3.12),

Wρ(µP
t, νP t) ≤ e−αWρ(µP

t−1, νP t−1) ≤ · · · ≤ e−αtWρ(µ, ν).

Note that by (3.11), Wρ(µ, ν) is a weighted average of ρ(x, y) over x, y ∈ Ω. Thus,

replacing each ρ(x, y) with its maximum shows that Wρ(µ, ν) ≤ maxx,y∈Ω ρ(x, y). Setting
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µ = δx and ν = π, and then using Lemma 3.11, shows that

∥∥P t(x, ·)− π∥∥
TV
≤ e−αtdiam(Ω),

uniformly over x ∈ Ω, which is (3.22). Next, setting t equal to the right hand side of (3.23)

shows that d(t) ≤ ε, as desired.

Remark 3.14. The path coupling theorem as stated only applies when the contraction

constant α > 0 in (3.15). However, if α = 0 (i.e. the expected path metric is non-

increasing), then we may still be able to say something useful. In particular, if the

probability that ρ(X,Y ) is non-zero is bounded below by some β > 0, then β can be used

to upper bound the mixing time by a coupling argument (see [21, Theorem 2.1] or [7]).

An example of path coupling will be presented in Lemma 5.4 of Chapter 5, to show

that the Glauber dynamics for sampling colourings of certain graphs is rapidly mixing.

3.3 Strong stationary times

In this section, we will describe how the method of strong stationary times can be used

to upper bound mixing times. The idea of strong stationary times was introduced by

Aldous and Diaconis in [2], and is further related to coupling and Fourier analysis in [3].

Recall from Section 2.3 that a stopping time for the Markov chain (Xt)t∈N is a random

variable τ taking values in N ∪ {+∞}, such that the event {τ = t} is determined by

X0, X1, . . . , Xt for every t ∈ N.

Definition 3.15. A stationary time τ is a stopping time, possibly depending on the

starting state x, such that Xτ is distributed as π:

Px (Xτ = y) = π(y), for all y ∈ Ω. (3.24)

If we further require that Xτ is independent of τ , such that

Px (Xτ = y, τ = t) = π(y)Px (τ = t) , for all y ∈ Ω, t ∈ N, (3.25)

then we say that τ is a strong stationary time.

Recall the definition of the separation distance (2.38):

sep(P t(x, ·), π) = max
y∈Ω

[
1− P t(x, y)

π(y)

]
.

Let s(t) := maxx∈Ω sep(P t(x, ·), π).

The following lemma shows that strong stationary times are connected with the sep-

aration distance, analogous to how coupling times are connected to the total variation

distance (Theorem 3.3 (ii)).
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Lemma 3.16. Consider a Markov chain M with finite state space Ω and transition

matrix P , starting at x ∈ Ω. If τ is a strong stationary time for M, then

sep(P t(x, ·), π) ≤ Px (τ > t) . (3.26)

Proof. First, observe that for any y ∈ Ω and t ∈ N,

Px (Xt = y, τ ≤ t) =
∑
s≤t

∑
z∈Ω

Px (Xt = y, τ = s,Xτ = z)

=
∑
s≤t

∑
z∈Ω

Px (Xt = y | τ = s,Xτ = z)Px (τ = s,Xτ = z)

=
∑
s≤t

∑
z∈Ω

P t−s(z, y)π(z)Px (τ = s) ,

using the strong stationary property. Since π is stationary for P , it follows that πP t−s = π,

and so
∑

z∈Ω π(z)P (t−s)(z, y) = π(y). Hence, this shows that

Px (Xt = y, τ ≤ t) = π(y)Px (τ ≤ t) . (3.27)

Fix y ∈ Ω. Note that P t(x, y) = Px (Xt = y) ≥ Px (Xt = y, τ ≤ t), which is equal to

π(y)Px (τ ≤ t) by (3.27). Hence,

1− P t(x, y)

π(y)
≤ 1− π(y)Px (τ ≤ t)

π(y)
= Px (τ > t) . (3.28)

By taking the maximum over all y ∈ Ω, the left hand side is equal to sep(P t(x, ·), π).

Remark 3.17. If the event {Xt = y} implies that {τ ≤ t}, then the inequality in

(3.28) is actually an equality. In that case, we say that y is a halting state for τ , and

sep(P t(x, ·), y) = Px (τ > t). (This is analogous to an optimal coupling.)

The separation distance provides an upper bound for the total variation distance.

Lemma 3.18. Continuing the notation used in Lemma 3.16, we have

∥∥P t(x, ·)− π∥∥
TV
≤ sep(P t(x, ·), π). (3.29)

In particular, taking the maximum over all x ∈ Ω implies that d(t) ≤ s(t).

Proof. Using (2.31),

∥∥P t(x, ·)− π∥∥
TV

=
∑
y∈Ω

π(y)>P t(x,y)

[π(y)− P t(x, y)] =
∑
y∈Ω

π(y)>P t(x,y)

π(y)

[
1− P t(x, y)

π(y)

]

Since π(y) sums to one or less,
∥∥P t(x, ·)− π∥∥

TV
is upper bounded by maxy∈Ω

[
1− P t(x,y)

π(y)

]
.
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Theorem 3.19. Let τ be a strong stationary time for a Markov chain with finite state

space Ω, and an irreducible and aperiodic transition matrix P . Then

∥∥P t(x, ·)− π∥∥
TV
≤ Px (τ > t) . (3.30)

In particular, taking the maximum over all x ∈ Ω implies that d(t) ≤ maxx∈Ω Px (τ > t).

Proof. This immediately follows from Lemma 3.18 and Lemma 3.16.

We will use the method of strong stationary times to provide an upper bound on the

mixing time of the well-known riffle shuffle. First, we will show, in a precise sense, that a

random walk on a group has the same mixing time if it is “run backwards”.

Definition 3.20. (i) The time reversal of an irreducible Markov chain with tran-

sition matrix P and stationary distribution π is the Markov chain with transition

matrix P̂ , where P̂ (x, y) = π(y)
π(x)P (y, x).

(ii) The time reversal of a random walk on a group G with increment distribution µ

(defined in Remark 2.7) is the random walk on G with increment distribution µ̂,

where µ̂(g) = µ(g−1).

Lemma 3.21. Consider a random walk on a group G with transition matrix P induced

by the increment distribution µ, and with uniform stationary distribution π. Let P̂ be the

transition matrix of its time reversal induced by the increment distribution µ̂. Then

∥∥P t(id, ·)− π∥∥
TV

=
∥∥∥P̂ t(id, ·)− π∥∥∥

TV
, for any t ∈ N.

In particular, the random walk on a group and its time reversal have the same mixing

time (recall that the starting state does not matter by Lemma 2.29).

Proof. Fix g ∈ G. For the original chain to get from id to g in t steps means that we can

write ztzt−1 · · · z1 = g, where zi ∈ G. The probability of this event is µ(z1) · · ·µ(zt). By

taking the inverse of both sides, this is equivalent to z−1
1 z−1

2 · · · z
−1
t = g−1. This describes

the time reversal moving from id to g−1 in t steps, with probability µ̂(z−1
t ) · · · µ̂(z−1

1 ),

which is equal to µ(z1) · · ·µ(zt). Summing the probabilities of all such events by varying

the symbols z1, . . . , zt shows that P t(id, g) = P̂ t(id, g−1). Hence,

1

2

∑
g∈G

∣∣∣∣P t(id, g)− 1

|Ω|

∣∣∣∣ =
1

2

∑
g∈G

∣∣∣∣P̂ t(id, g−1)− 1

|Ω|

∣∣∣∣ =
1

2

∑
g̃∈G

∣∣∣∣P̂ t(id, g̃)− 1

|Ω|

∣∣∣∣ ,
relabelling g̃ = g−1 in the last sum. Hence, the total variation distances are equal.

Example 3.22 (Riffle shuffle). The Gilbert-Shannon-Reeds model describes a mathe-

matically precise way of riffle shuffling a deck of cards (see [6] for more details). This can

be viewed as a random walk on the symmetric group Sn.
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Cut the deck into two packets according to a Binomial(n, 1
2) distribution. Interleave

the packets, where a card is dropped from one of the packets with probability proportional

to the number of cards remaining, until there are no cards remaining (see Figure 3.3.1).

That is, if there are a cards in the left packet and b cards in the right packet, then the next

card is dropped from the left packet with probability a
a+b , and the right packet otherwise.

[1] [2] [3] [4] [5] [6] [7] [8] −→ [1] [2] [3]
[4] [5] [6] [7] [8]

−→ [1] [4] [5] [2] [6] [7] [3] [8]

Figure 3.3.1: A riffle shuffle – the deck is cut into two packets and then interleaved.

A rising sequence is defined to be a maximal subset of an arrangement of cards con-

sisting of successive face values when read in order. For example, reading the arrangement

14526738 from left to right shows that there are two rising sequences 123 and 45678 in-

terleaved together. The increment distribution µ generates permutations characterised

by the number of rising sequences, and is given by

µ(σ) =


n+1
2n if σ = id,

1
2n if σ has exactly two rising sequences,

0 otherwise.

This chain is aperiodic, since the identity can be generated. The chain is also irreducible,

since any transposition (i i + 1), 1 ≤ i < n can be produced, and recalling that Sn can

be generated by adjacent transpositions. (More concretely, we can cut the deck at i, drop

the right packet except for i+ 1, and then drop i, i+ 1, and the rest of the left packet.)

We will bound the mixing time using a creative strong stationary time described by

Aldous and Diaconis [2]. First, we will describe how to perform an inverse riffle shuffle

(see Figure 3.3.2). Label the cards with n independent bits selected uniformly at random.

Pull all the cards labelled 0 to the top of the deck, and append the remaining cards

labelled 1 to the end, preserving their relative order.

[4] [5] [6] [7] [8]
[1] [2] [3]

0 1 1 0 1 1 0 1

−→ [1] [2] [3] [4] [5] [6] [7] [8]

Figure 3.3.2: An inverse riffle shuffle – after independent and uniformly random bits
are assigned to each card, the cards labelled 0 are pulled to the front of the deck, and
the remaining cards labelled 1 are appended to the end, preserving their relative order.
(This reverses the riffle shuffle in Figure 3.3.1 by identifying the two rising sequences.)
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In other words, if a riffle shuffle generates permutation σ, then the bits identify the

two rising sequences and inverts the interleaving procedure, so that σ−1 is generated with

the same probability. Thus, the inverse riffle shuffle is the time reversal of the riffle shuffle.

By Lemma 3.21, it will suffice to bound the mixing time of the inverse riffle shuffle.

Note that each step of the inverse riffle shuffle assigns an independent and uniformly

random bit to each card. After t inverse shuffles, each card can be associated with a

bitstring of length t. Let τ be the first time that all n cards have a distinct bitstring.

Then we claim that τ is a strong stationary time.

Indeed, when each card has a distinct bitstring, the resulting permutation is com-

pletely determined by sorting the cards in reverse lexicographic order. This is indepen-

dent of the starting arrangement and τ . Furthermore, since each bitstring sequence arises

independently with the same probability, the n distinct bitstrings at τ can be permuted

to obtain all n! equally likely arrangements.

Analysing τ reduces the problem to the well-known Birthday Problem. Observe that

{τ > t} corresponds to the event that selecting n bitstrings (“birthdays”) from 2t equally

likely choices (“number of days”) results in at least one duplication (i.e. two people have

the same birthday). Hence, its complement {τ ≤ t}, the event that all n bitstrings are

distinct, has probability
∏n−1
k=0

(
1− k

2t

)
.

By applying Theorem 3.19 and Lemma 3.21, we conclude that

d(t) =
∥∥P t(id, ·)− π∥∥

TV
=
∥∥∥P̂ t(id, ·)− π∥∥∥

TV
≤ P (τ > t) = 1−

n−1∏
k=0

(
1− k

2t

)
. (3.31)

Let t = 2 log2(n/c), where c is a fixed real number. Asymptotically, d(t) = 1− e−
c2

2
+O( 1

n)

from (3.31). For sufficiently large n, choosing c = 3
4 implies that d(t) ≤ ε, and hence the

mixing time satisfies tmix ≤ 2 log2

(
4n
3

)
.

The Gilbert-Shannon-Reeds model of the riffle shuffle is further analysed in Bayer and

Diaconis [6]. In their paper, the exact distribution of the chain after t steps is obtained,

which leads to even more precise expressions for the distance to stationarity. A summary

of some of their key results is given in Section 6.1 of Chapter 6.
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Chapter 4

Analytical Techniques for Analysing Mixing Times

In this chapter, we will describe some analytical techniques that can be used to bound

mixing times. In Section 4.1, the class of reversible chains will be shown to permit a highly

useful spectral representation, which connects the eigenvalues of the transition matrix to

mixing times. This will then be used to develop the geometrical methods of conductance

(Section 4.2), and canonical paths (Section 4.3).

4.1 Spectral representation

Consider an irreducible Markov chain with finite state space Ω, irreducible transition

matrix P , and stationary distribution π. Let L2(π) denote the space of all functions from

Ω to R, equipped with the following inner product induced by π:

〈f, g〉π :=
∑
x∈Ω

f(x)g(x)π(x), f, g ∈ L2(π).

Suppose that P is reversible with π (i.e. the detailed balance conditions (2.6) are satisfied).

Then P is a self-adjoint operator on L2(π), since

〈Pf, g〉π =
∑
x∈Ω

Pf(x)g(x)π(x) =
∑
x∈Ω

∑
y∈Ω

P (x, y)f(y)g(x)π(x)

=
∑
y∈Ω

∑
x∈Ω

P (y, x)f(y)g(x)π(y) =
∑
y∈Ω

f(y)Pg(y)π(y) = 〈f, Pg〉π . (4.1)

For the rest of this chapter, we will assume that all Markov chains considered are re-

versible. This naturally leads to a more elegant theory and tighter bounds. For a greater

treatment of the non-reversible case and the analytical tools that can be used to obtain

similar bounds (such as Dirichlet forms and log-Sobolev inequalities), see [46, 52].

Theorem 4.1. Let P be the transition matrix of a reversible and irreducible Markov

chain with finite state space Ω and stationary distribution π. Then

(i) There is an orthonormal basis for L2(π) consisting of eigenfunctions {fj}|Ω|j=1 of P

corresponding to real eigenvalues {λj}|Ω|j=1. The eigenfunction f1 corresponding to

the eigenvalue 1 can be taken to be the function 1 that maps every x ∈ Ω to one.
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(ii) Given any function f : Ω→ R and t ∈ N, we can write

P tf = 〈f,1〉π 1 +

|Ω|∑
j=2

λtj 〈f, fj〉π fj . (4.2)

(Note that 〈f,1〉π = Eπ [f ].) In particular, for any x, y ∈ Ω,

P t(x, y)

π(y)
= 1 +

|Ω|∑
j=2

λtjfj(x)fj(y). (4.3)

Proof. (i) Recall from (4.1) that P is a self-adjoint operator on L2(π). Hence, the Spectral

Theorem (e.g. see [27, p.154, Theorem 6]) implies that there exists a orthonormal basis

for L2(π) of real-valued eigenfunctions of P , associated with real eigenvalues. Note that

P1 = 1 because P is stochastic. Since the eigenspace associated with the eigenvalue 1 is

one-dimensional by the Perron-Frobenius Theorem (Theorem 2.14), we can take f1 = 1.

(ii) Observe that for each j,
〈
P tf, fj

〉
π

=
〈
f, P tfj

〉
π

= λtj 〈f, fj〉π. Therefore, expand-

ing P tf with respect to the orthonormal basis {fj}|Ω|j=1 shows that

P tf =
〈
P tf,1

〉
π

1 +

|Ω|∑
j=2

〈
P tf, fj

〉
π
fj = 〈f,1〉π 1 +

|Ω|∑
j=2

λtj 〈f, fj〉π fj ,

as desired. For the second statement, recall the delta function δy(x) = 1{y=x}. Note that

for each j, 〈δy, fj〉π = fj(y)π(y). Since P t(x, y) = (P tδy)(x), it follows from (4.2) that

P t(x, y) = 1 +

|Ω|∑
j=2

λtjfj(y)π(y)fj(x).

Moving π(y) to the other side completes the proof.

Definition 4.2. Let P be a reversible and irreducible transition matrix. Then its eigen-

values can be written in decreasing order: 1 = λ1 > λ2 ≥ · · · ≥ λ|Ω| ≥ −1.

We call λ2 the second eigenvalue, and λ|Ω| the smallest eigenvalue. We define the

absolute second eigenvalue to be λ∗ := max{λ2, |λ|Ω||}. The spectral gap and absolute

spectral gap are defined by γ = 1− λ2 and γ∗ = 1− λ∗ respectively.

The following relates the eigenvalues of an irreducible transition matrix P to its period.

In particular, if P is aperiodic, then −1 is not an eigenvalue (so that λ|Ω| > −1).

Proposition 4.3 ([38, Exercise 12.1]). Let P be an irreducible transition matrix, and fix

any state x0 ∈ Ω. Recall that T (x0) = {t ∈ Z+ : P t(x, x) > 0} from Definition 2.1, and

that the period of P is the greatest common divisor of T (x0).

If ω is the a-th root of unity, then a is a common divisor of T (x0) if and only if ω is

an eigenvalue of P .
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Proof. Let b be the greatest common divisor of T (x0). If a divides T (x0), then a divides

b. Recall that from Proposition 2.12, Ω can be partitioned into {Ck}b−1
k=0. For any x ∈ Ω,

x ∈ Cj(x) for a certain j(x) ∈ {0, 1, . . . , b − 1}. Consider the function f(x) = ωj(x). If

P (x, y) > 0, then y ∈ Cj(x)+1 (where the indices are taken modulo b). Hence, f is an

eigenfunction since Pf(x) =
∑

y∈Ω P (x, y)ωj(y) = ωj(x)+1 = ωf(x).

Conversely, suppose that ω is an a-th root of unity, and Pf = ωf for some f . Then it

can be shown that if P (x, y) > 0, then f(y) = ωf(x) (however, we will omit the details).

Hence, we can define Dj = {x ∈ Ω : f(x) = ωjf(x0)}. Thus, if x ∈ Dj and P (x, y) > 0,

then y ∈ Dj+1 (where the indices are taken modulo b). Hence, a must divide T (x0).

Lemma 4.4. Consider a Markov chain with transition matrix P . Let P̃ = P+I
2 be the

transition matrix of the lazy version of the chain, such that the holding probabilities satisfy

P̃ (x, x) ≥ 1
2 for all x. If λ is an eigenvalue of P , then 1

2(λ+ 1) is an eigenvalue of P̃ . In

particular, all the eigenvalues of P̃ are non-negative.

Proof. Suppose that f is an eigenfunction of P , corresponding to eigenvalue λ. Then we

have P̃ f = Pf+If
2 = λf+f

2 = 1
2(λ+ 1)f , so that f is an eigenfunction of P̃ , corresponding

to eigenvalue 1
2(λ+ 1). Since −1 ≤ λ ≤ 1, it follows that 0 ≤ 1

2(λ+ 1) ≤ 1.

Remark 4.5. (i) Making a chain lazy addresses the potential problem of periodicity.

Moreover, it also ensures that all the eigenvalues are non-negative by Lemma 4.4.

This may lead to more convenient analysis, since the spectral gap γ and absolute

spectral gap γ∗ coincide. However, laziness will slow down the chain by at most a

factor of two. For more discussion on lazy chains in combinatorial problems, see [25].

(ii) Certain Markov chains may naturally have non-negative eigenvalues, such as heat-

bath chains [22] (for example, this includes the single-site Glauber dynamics dis-

cussed in Chapter 7). Thus, lazy versions of such chains are unnecessary.

The following theorem shows that the absolute second eigenvalue λ∗ effectively deter-

mines the mixing time. The further away λ∗ is from 1, the faster the chain mixes.

Theorem 4.6. Let P be the transition matrix of a reversible, irreducible, and aperiodic

chain, with finite state space Ω, and stationary distribution π. Let πmin := minx∈Ω π(x).

Then ⌊
λ∗

1− λ∗
log

(
1

2ε

)⌋
≤ tmix(ε) ≤

⌈
1

1− λ∗
log

(
1

επmin

)⌉
. (4.4)

Proof. We first show the upper bound of (4.4). Recall that |λj | ≤ λ∗ for all 2 ≤ j ≤ |Ω|.
Fix x, y ∈ Ω. Starting from (4.3), using the triangle inequality, and then the Cauchy-

Schwarz inequality, shows that

∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣ ≤ λt∗ |Ω|∑
j=2

|fj(x)| |fj(y)| ≤ λt∗

 |Ω|∑
j=2

f2
j (x)

1/2  |Ω|∑
j=2

f2
j (y)

1/2

. (4.5)
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Using (4.2), we can expand δx with respect to the orthonormal basis {fj}|Ω|j=1 to show that

π(x) = 〈δx, δx〉π =

〈 |Ω|∑
j=1

fj(x)π(x)fj ,

|Ω|∑
j=1

fj(x)π(x)fj

〉
π

= π(x)2

|Ω|∑
j=1

fj(x)2. (4.6)

Since f1(x) = 1, this shows that
∑|Ω|

j=2 f(x)2 ≤ 1
π(x) . Thus, (4.5) implies that

∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣ ≤ λt∗√
π(x)π(y)

≤ λt∗
πmin

=
(1− γ∗)t

πmin
≤ e−γ∗t

πmin
,

using the inequality 1 − x ≤ e−x for x ≥ 0. Since this is independent of x and y, this

provides an upper bound for the separation distance s(t). Furthermore, since d(t) ≤ s(t)
by Lemma 3.18, this shows that d(t) ≤ e−γ∗t

πmin
. Hence, setting t equal to the upper bound

in (4.4) shows that d(t) ≤ ε, as desired.

Next, we will show the lower bound of (4.4). Let f be an eigenfunction of P corre-

sponding to eigenvalue λ 6= 1, so that Pf = λf . Recalling that the eigenfunctions of a

self-adjoint operator corresponding to distinct eigenvalues are orthogonal (e.g. see [27,

p.154, Theorem 4]), we have 〈1, f〉π =
∑

y∈Ω π(y)f(y) = 0. Let ‖f‖∞ := maxx∈Ω |f(x)|.
Then for any x ∈ Ω,

|λtf(x)| = |P tf(x)| =
∣∣∣∑
y∈Ω

(
[P t(x, y)− π(y)]f(y)

)∣∣∣ ≤ ‖f‖∞ · 2d(t). (4.7)

Choosing x such that |f(x)| = ‖f‖∞, (4.7) implies that |λ|t ≤ 2d(t). Hence |λ|tmix(ε) ≤ 2ε,

which is equivalent to tmix(ε) log
(

1
|λ|

)
≥ log

(
1
2ε

)
. Using the inequality x − 1 ≥ log x for

x > 0 then implies that tmix(ε)
(

1
|λ| − 1

)
≥ log

(
1
2ε

)
. Since this holds with λ = λ∗ in

particular, the lower bound is obtained by rearranging.

Example 4.7 (Random walk on the cycle). Recall the random walk on the n-cycle from

Example 3.4. We will explicitly find the eigenvalues of the associated non-lazy transition

matrix P . By Lemma 4.4, this will give the eigenvalues of the lazy walk.

It will be algebraically convenient to consider the state space Ω = {1, ω, ω2, . . . , ωn−1},
where ω is the nth root of unity in C. At each step, the chain moves from ωk to ωk−1 or

ωk+1 with equal probability. Let φj : Ω → C be defined by φj(ω
k) = ωjk. Then we can

check that for all 0 ≤ j, k ≤ n− 1,

Pφj(ω
k) =

φj(ω
k−1) + φj(ω

k+1)

2
=
ωjk−j + ωjk+j

2
=

(
ω−j + ωj

2

)
φj(ω

k).

Similarly, its complex conjugate φj : Ω → C defined by φj(ω
k) = ω−jk also satisfies

Pφj =
(
ω−j+ωj

2

)
φj . Hence, the real-valued function fj := Re(φj) = 1

2(φj + φj) is an
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eigenfunction of P , with eigenvalue λj = cos
(

2πj
n

)
. This gives the n distinct eigenvalues

of P . The second eigenvalue is λ2 = cos
(

2π
n

)
= 1− 4π2

n2 +O(n−4), using Taylor series.

Hence, the lazy chain has second eigenvalue 1+λ2
2 = 1 − 2π2

n2 + O(n−4), and spectral

gap 2π2

n2 +O(n−4). Since πmin = 1
n , Theorem 4.6 implies an O(n2 log n) upper bound for

the mixing time, which has an extra factor of log n compared to the coupling bound.

Example 4.8 (Random walk on the hypercube). Recall the lazy random walk on the

n-dimensional hypercube from Example 3.6. Denote its state space by Ω̃. We will now

find the eigenvalues of the associated (lazy) transition matrix P̃ .

First, consider the case of n = 1. This is a random walk on Ω = {0, 1} with 2 × 2-

transition matrix P , where each element is equal to 1
2 . Consider the functions 1 and

g, where 1(x) = 1 and g(x) = 2x − 1 for x = 0, 1. Then P1 = (1
2 + 1

2)1 = 1, and

Pg = (1
2 −

1
2)1 = 0. Hence 1 and g are eigenfunctions of P , corresponding to eigenvalues

1 and 0 respectively.

Now let n ≥ 1. Let Pi, Ωi be n copies of the transition matrix and state space where

n = 1. Then for the lazy random walk on the n-dimensional hypercube, Ω̃ = Ω1× . . .Ωn,

and

P̃ (x,y) =

n∑
i=1

[
1

n
Pi(xi, yi)

∏
j 6=i

1{yj=xj}

]
,

where x = (xi)
n
i=1, xi ∈ Ωi, and similarly for y. In other words, a bit is selected uniformly

at random, and a transition is made in that coordinate. The product signifies that y is

accessible from x if and only if they differ by at most one bit.

For each 1 ≤ i ≤ n, let fi be an eigenfunction of Pi corresponding to eigenvalue λi.

Then Pifi = λifi, or equivalently,
∑

yi∈Ωi
Pi(xi, yi)fi(yi) = λifi(xi) for all xi ∈ Ωi. We

claim that the function f̃ defined by f̃(x) = f1(x1)f2(x2) . . . fn(xn) is an eigenfunction of

P̃ (this is actually the tensor product f̃ = f1 ⊗ · · · ⊗ fn). Indeed, since only one bit can

be changed at a time, we can write

P̃ f̃(x) =
∑
y∈Ω̃

P̃ (x,y)f̃(y) =

n∑
i=1

∑
yi∈Ωi

[
1

n
Pi(xi, yi)fi(yi)

∏
j 6=i

fj(xj)

]

=

n∑
i=1

1

n
λif1(x1)f2(x2) . . . fn(xn) =

(
n∑
i=1

λi
n

)
f̃(x).

This shows that f̃ is an eigenfunction of P̃ , corresponding to eigenvalue
∑n

i=1
λi
n .

Therefore, varying the choices of whether each fi corresponds to eigenvalue 0 or 1 gives

all the eigenvalues of P̃ . Setting n−1 of the fi to correspond to 1, and the remaining one

to 0 implies that the (absolute) second eigenvalue of P̃ is λ̃2 = n−1
n = λ̃∗. Since πmin = 1

n ,

Theorem 4.6 implies that the mixing time tmix is upper bounded by
⌈
n log(4n)

⌉
. This is

the same as the coupling bound.
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4.2 Conductance

In the next two sections, we will use the spectral representation of a reversible Markov

chain to develop some geometrical methods for bounding the mixing time. While prob-

abilistic methods, such as coupling and strong stationary times, can yield tight bounds

for simple chains, they are less amenable to more irregular processes, which lack a high

degree of symmetry [31]. The following methods, based on the underlying weighted graph

of a chain, have been particularly successful for some of these problems.

In this section, we will discuss the method of conductance, which is typically used

to lower bound the mixing time. Intuitively, the conductance measures whether there

are any “bottlenecks” in the underlying geometry of a chain that inhibit mixing. This is

related to the Cheeger constant in differential geometry (see [33] for further discussion).

Definition 4.9. Let P be a transition matrix with finite state space Ω and stationary

distribution π. Then the edge measure Q is defined by

Q(x, y) = π(x)P (x, y), x, y ∈ Ω,

Q(A,B) =
∑

x∈A,y∈B
Q(x, y), A,B ⊆ Ω. (4.8)

The conductance (also known as the bottleneck ratio) of a set S ⊆ Ω, and of the whole

chain, is defined by, respectively,

Φ(S) =
Q(S, Sc)

π(S)
, and Φ∗ = min

S⊆Ω

π(S)≤ 1
2

Φ(S). (4.9)

Lemma 4.10. Continuing the notation used in Definition 4.9,

(i) 0 ≤ Φ(S) ≤ 1 for any S ⊆ Ω; and

(ii) Q(S, Sc) = Q(Sc, S) for any S ⊆ Ω.

Proof. (i) The lower bound is clear. For the upper bound, observe that

Φ(S) =
∑
x∈S

π(x)

π(S)

∑
y∈Sc

P (x, y)

 .
Since

∑
y∈Sc P (x, y) ≤ 1 for all x ∈ S, it follows that Φ(S) ≤ 1.

(ii) Recall that π = πP is equivalent to π(y) =
∑

x∈Ω π(x)P (x, y) for all y ∈ Ω. Thus,

by interchanging the order of summation,

Q(Sc, S) =
∑

x∈Sc,y∈S
π(x)P (x, y) =

∑
y∈S

[∑
x∈Ω

π(x)P (x, y)−
∑
x∈S

π(x)P (x, y)

]
=
∑
y∈S

π(y)−
∑

y∈S,x∈S
π(x)P (x, y).
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Since
∑

y∈Ω P (x, y) = 1, by interchanging the order of summation again,

Q(Sc, S) =
∑
y∈S

π(y)−
∑
x∈S

π(x)

[∑
y∈Ω

P (x, y)−
∑
y∈Sc

P (x, y)

]
=
∑
y∈S

π(y)−
∑
x∈S

π(x) +
∑

x∈S,y∈Sc
π(x)P (x, y) = Q(S, Sc),

as desired.

Remark 4.11. The conductance of a set S can be interpreted as the conditional prob-

ability of leaving S, given that the chain starts in S. A set with high conductance is

conducive for the chain to leave and explore the rest of the state space. The conductance

of the whole chain looks for the global bottleneck, which has the lowest conductance.

The conductance provides a particularly simple lower bound on the mixing time of

irreducible (and not necessarily reversible) chains.

Theorem 4.12. Consider an irreducible Markov chain with transition matrix P and

stationary distribution π. Then

tmix(ε) ≥

⌊(
1

2
− ε
)

1

Φ∗

⌋
. (4.10)

In particular, tmix ≥
⌊

1
4Φ∗

⌋
.

Proof. Fix S ⊆ Ω with π(S) ≤ 1
2 . Define πS by πS(A) = π(A ∩ S) for any A ⊆ Ω, which

is π restricted to S. Define µS by µS(A) = π(A∩S)
π(S) , which is π conditioned on S. Recall

that from (2.31), the total variation distance between µSP and µS can be written

π(S) ‖µSP − µS‖TV = π(S)
∑
y∈Ω

µSP (y)≥µ(y)

[µSP (y)− µS(y)] =
∑
y∈Ω

πSP (y)≥π(y)

[πSP (y)− πS(y)].

(4.11)

Note that πS(x) = π(x)1{x∈S}. Thus πSP (y) =
∑

x∈Ω πS(x)P (x, y) =
∑

x∈S π(x)P (x, y),

which is less than or equal to
∑

x∈Ω π(x)P (x, y) = π(y). If y ∈ S, then πSP (y) ≤ πS(y).

On the other hand, if y /∈ S, then πSP (y) ≥ 0 = πS(y). Thus, the sum in the last

term of (4.11) can be taken over all y ∈ Sc (which satisfies πS(y) = 0), so that

π(S) ‖µSP − µS‖TV =
∑
y∈Sc

πSP (y) =
∑

y∈Sc,x∈S
π(x)P (x, y) = Q(S, Sc).

Hence, ‖µSP − µS‖TV = Φ(S). Recall that the total variation distance is non-decreasing

when advanced by P from (2.33). Thus,
∥∥µSP u+1 − µSP u

∥∥
TV
≤ ‖µSP − µS‖TV = Φ(S)
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for any u ∈ N. By the triangle inequality,

∥∥µSP t − µS∥∥TV
=

∥∥∥∥∥
t−1∑
u=0

(µSP
u+1 − µSP u)

∥∥∥∥∥
TV

≤
t−1∑
u=0

∥∥µSP u+1 − µSP u
∥∥

TV
≤ tΦ(S).

(4.12)

Since π(S) ≤ 1
2 , ‖µS − π‖TV ≥ π(Sc)−µS(Sc) = π(Sc) ≥ 1

2 . Using the triangle inequality

again shows that

1

2
≤ ‖µS − π‖TV ≤

∥∥µSP t − µS∥∥TV
+
∥∥µSP t − π∥∥TV

. (4.13)

Therefore, if t = tmix(ε), then the last term in (4.13) is at most ε, by definition of

the total variation distance (recall that the starting distribution µS does not matter,

by Corollary 2.22 (ii)). Combining this with (4.12) shows that 1
2 ≤ tmix(ε)Φ(S) + ε.

Rearranging and then minimising over all subsets S with π(S) ≤ 1
2 leads to the desired

bound.

We will now discuss how the conductance of a reversible chain characterises its mixing.

Definition 4.13. Let P be a reversible transition matrix with stationary distribution π.

The Dirichlet form on P is defined on functions f and g on Ω by

E(f, g) := 〈(I − P )f, g〉π , (4.14)

where I is the identity operator. We also define E(f) := E(f, f). By expanding the square

and using the reversibility assumption, it is not too difficult to check that

E(f) =
1

2

∑
x,y∈Ω

[f(x)− f(y)]2Q(x, y). (4.15)

The following variational characterisation of the spectral gap will be key.

Proposition 4.14. Suppose that f ∈ L2(π). Then the spectral gap γ = 1− λ2 satisfies

γ = inf
Eπ [f ]=0,‖f‖π=1

E(f) = inf
Eπ [f ]=0,f 6=0

E(f)

‖f‖2π
= inf

Varπ(f)6=0

E(f)

Varπ(f)
. (4.16)

Here ‖f‖2π = 〈f, f〉π and Varπ(f) = ‖f − Eπ [f ]‖2π. Also, note that the condition that

Eπ [f ] = 0 is equivalent to 〈f,1〉π = 0, that is f ⊥π 1.

Proof. Note that this is essentially the min-max theorem from linear algebra for the second

eigenvalue (for example, see [27, p.181]). We will provide a nice, brief proof using the

spectral representation.
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Let f ∈ L2(π). Consider the orthonormal basis {fj}|Ω|j=1 of L2(π) from Theorem 4.1.

If ‖f‖π = 1 and f ⊥π 1, then f =
∑|Ω|

j=2 cjfj , where cj = 〈f, fj〉 and
∑|Ω|

j=2 c
2
j = 1. Thus,

E(f) = 〈(I − P )f, f〉π =

|Ω|∑
j=2

c2
j (1− λj) ≥ 1− λ2.

Hence, the infimum of E(f) is greater than or equal to 1−λ2. Since f2 satisfies ‖f2‖π = 1

and 〈f2,1〉π = 0, the infimum of E(f) is at most E(f2) = 1 − λ2. This shows the first

equality. For the second equality, observe that E(cf) = c2E(f) for any real c. Hence, for

any f 6= 0 with Eπ [f ] = 0,

E(f)

‖f‖2π
= E

(
f

‖f‖π

)
≥ inf

Eπ [f ]=0,‖f‖π=1
E(f).

Therefore, infEπ [f ]=0,f 6=0
E(f)

‖f‖2π
≥ infEπ [f ]=0,‖f‖π=1 E(f). The opposite inequality follows

from subset inclusion. Finally, the third equality follows similarly, by observing that

E(f + c) = E(f) for any real c, and using the standard result Varπ(f + c) = Varπ(f).

Remark 4.15. A useful form of the variational characterisation for the spectral gap is

γ = inf
Eπ [f ]=0,f 6=0

∑
x,y∈Ω[f(x)− f(y)]2Q(x, y)∑
x,y∈Ω[f(x)− f(y)]2π(x)π(y)

. (4.17)

This follows from Proposition 4.14, by verifying that for any non-zero f ∈ L2(π) satisfying

Eπ [f ] =
∑

x∈Ω f(x)π(x) = 0, the denominator of (4.17) equals ‖f‖2π =
∑

x∈Ω f(x)2π(x).

(This can be done by expanding the square, and using
∑

x∈Ω π(x) = 1.)

The variational characterisation is used to prove the next theorem, which connects

the conductance of a chain and the spectral gap. Since the details are somewhat beyond

the scope of this thesis, the proof will be omitted for brevity.

Theorem 4.16 ([38, Theorem 13.14]). Let P be the transition matrix of a reversible and

irreducible Markov chain, with finite state space Ω and stationary distribution π. Then

the spectral gap γ = 1− λ2 is related to the conductance of the chain by

Φ2
∗

2
≤ 1− λ2 ≤ 2Φ∗. (4.18)

By combining Theorem 4.16 with the bounds on the mixing time from the spectral

gap in Theorem 4.6, we deduce the following.

Corollary 4.17. Suppose that λ∗ = λ2 (for example, if the chain is lazy). Then the

conductance provides the following bounds on the mixing time:⌊(
1

2Φ∗
− 1

)
log

(
1

2ε

)⌋
≤ tmix(ε) ≤

⌈
2

Φ2
∗

log

(
1

επmin

)⌉
. (4.19)
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Remark 4.18. Comparing the lower bound on the mixing time in Corollary 4.17 with

the lower bound in Theorem 4.12, it is interesting to see that for ε = 1/4, the latter

bound actually performs better, even though it does not assume reversibility. The bound

obtained using the spectral representation is superior only for much smaller ε.

Example 4.19 (Random walk on two glued complete graphs). Consider a random walk

on two complete graphs Kn glued at a particular vertex v (see Figure 4.2.1). Suppose

that Ω = {v, v2, . . . , vn, w2, . . . , wn}, where we identify the common vertex v = v1 = w1.

v

v2v3

v4

v5 v6

w2 w3

w4

w5w6

Figure 4.2.1: A random walk on two copies of the complete graph Kn glued together
at a common vertex (here n = 6). The vertex v is a bottleneck that inhibits mixing, since
the only path out of the shaded set is via the bold edges.

The random walk selects a neighbouring vertex (including itself) to move to, uniformly

at random. More precisely, the transition probabilities are P (vi, vj) = P (wi, wj) = 1
n for

1 < i ≤ n, 1 ≤ j ≤ n. For the common vertex, P (v, vi) = P (v, wi) = 1
2n−1 for 1 ≤ i ≤ n.

Consider the distribution π given by π(vi) = π(wi) = C
2n−1 for 1 < i ≤ n, and

π(v) = C
n , where C is the normalising constant. It can be checked that P is reversible

with respect to π, and hence π is the stationary distribution by Proposition 2.6.

Let A = {v2, . . . , vn} be the vertices of one of the complete graphs, excluding the

common vertex v. The conductance of this set is Φ(A) = Q(A,Ac)
π(A) , where π(A) = C(n−1)

2n−1

and Q(A,Ac) = C(n−1)
n(2n−1) , since the only way out of A is through v. Therefore Φ(A) = 1

n ,

and Theorem 4.12 implies that the mixing time of the chain has a lower bound of
⌊
n
4

⌋
.

4.3 Canonical paths

The idea of the canonical paths method is to see whether a set of canonical paths be-

tween each state can be constructed, such that “hot spots” carrying a particularly large

burden are avoided. The method has been used to obtain upper bounds on complicated

combinatorial chains (such as sampling matchings of a graph [33]).

The canonical paths method was first used to bound the conductance by Jerrum and

Sinclair [31]. Subsequent papers by Diaconis and Stroock [17] and Sinclair [54] showed

that the method could be used to directly bound the mixing time. For more detailed

applications, see [30, 31]. This has also been generalised to the method of multicommodity

flows, which allows for multiple paths between states (for example, see [54, 47]).
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In this section, we will continue to assume that all chains considered are reversible.

(For non-reversible versions of the canonical paths bound, see [30, Corollary 5.9].)

Definition 4.20. Suppose that P is the transition matrix of a reversible and irreducible

Markov chain, with finite state space Ω and stationary distribution π. We can view the

chain as a directed graph (Ω, E), where (x, y) ∈ E if and only if P (x, y) > 0. We define

the edge measure Q (4.8) applied to an edge e = (x, y) by Q(e) = Q(x, y) = π(x)P (x, y).

A canonical path γxy between a pair (x, y) ∈ Ω2 is a sequence of edges (xi−1, xi),

1 ≤ i ≤ r, such that x0 = x and xr = y. The length of the path is |γxy| = r. Let

Γ = {γxy : x, y ∈ Ω} denote a chosen set of canonical paths between all pairs (x, y) ∈ Ω2.

The maximum edge loading of Γ is defined by

ρ(Γ) = max
e∈E

1

Q(e)

∑
γxy3e

π(x)π(y)|γxy|. (4.20)

This measures the maximum “flow” in the chosen set of canonical paths along any edge e,

as a fraction of its capacity Q(e). Intuitively, the chain is rapidly mixing if a good set of

paths can be selected, such that no particular edge is over-utilised (i.e. no bottlenecks).

Theorem 4.21 (Sinclair [54]). Let P be the transition matrix of a reversible and irre-

ducible Markov chain with stationary distribution π. For any choice of canonical paths

Γ, the spectral gap γ = 1− λ2 satisfies

γ ≥ 1

ρ(Γ)
. (4.21)

Proof. Recall the functional characterisation of the spectral gap from Proposition 4.14.

Let f ∈ L2(π) be any non-zero function with Eπ [f ] = 0. Since the edges in γxy, which

we shall denote by e = (e−, e+), ultimately start at x and end at y, the denominator

of (4.17),
∑

x,y∈Ω[f(x)− f(y)]2π(x)π(y), can be written using a telescoping sum as

∑
x,y∈Ω

π(x)π(y)
( ∑
e∈γxy

[f(e+)− f(e−)]
)2
≤
∑
x,y∈Ω

π(x)π(y) |γxy|
( ∑
x,y∈Ω

[f(e+)− f(e−)]2
)
.

By summing over all edges instead of the vertices, the upper bound above is equal to

∑
e∈E

[f(e+)− f(e−)]2
( ∑
γxy3e

π(x)π(y) |γxy|
)
≤
∑
e∈E

[f(e+)− f(e−)]2Q(e)ρ(Γ)

= ρ(Γ)
∑
x,y∈Ω

[f(x)− f(y)]2Q(x, y).

Rearranging shows that 1
ρ(Γ) ≤

∑
x,y∈Ω[f(x)−f(y)]2Q(x,y)∑
x,y∈Ω[f(x)−f(y)]2π(x)π(y)

. Since f was arbitrary, and γ is

the infimum by (4.17), this implies that γ ≥ 1
ρ(Γ) , as desired.
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By combining Theorem 4.21 with the bounds on the mixing time in terms of the

spectral gap from Theorem 4.6, we can deduce the following upper bound on the mixing

time in terms of the maximum edge loading.

Corollary 4.22. Suppose that λ∗ = λ2 (for example, if the chain is lazy). Let Γ be a set

of canonical paths with maximum edge loading ρ(Γ). Then

tmix(ε) ≤

⌈
ρ(Γ) log

(
1

επmin

)⌉
. (4.22)

Example 4.23 (Random walk on the hypercube). Recall the lazy random walk on the

n-dimensional hypercube from Example 3.6. We will now obtain an upper bound of the

mixing time using a canonical paths argument.

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be arbitrary states (i.e. bitstrings)

in Ω. Define the canonical path γxy between x and y by x0 = x, x1, . . . , xn = y, where

xi = (y1, y2, . . . , yi, xi+1, . . . , xn) for 1 ≤ i ≤ n. That is, we change the bits of x to the

corresponding bits of y one at a time, moving from left to right.

The length of every canonical path is |γxy| = n. An edge e in the underlying graph

of the chain connects two states if and only if they differ by one bit. Since π(x) = 2−n

for any x ∈ Ω, it follows that Q(e) is constant across any edge. Therefore, to obtain ρ(Γ)

from (4.20), it suffices to compute the number of canonical paths using any edge.

Suppose that e = (w,w′), where w and w′ only differ in the ith bit for some 1 ≤ i ≤ n.

Since our canonical paths sweep from left to right, it follows that if e ∈ γxy, then the last

n− i+ 1 bits of x must be the same as w. This leaves the first i− 1 bits of x free to vary

over 2i−1 choices. Similarly, the first i bits of y must be the same as w′, which leaves the

last n − i bits of y free to vary over 2n−i choices. Thus, the total number of canonical

paths using any particular edge is 2n−1.

Since Q(e) = π(w)P (w,w′) = 2−n(2n)−1 (recall that the chain is lazy),

ρ(Γ) = 2n(2n) · (2−2nn) · 2n−1 = n2.

Therefore, by Corollary 4.22,

tmix(ε) ≤ dn2(n log 2 + log ε−1)e.

This bound is worse than the O(n log n + n log ε−1) bound from coupling. The extra

slack is typical of this method. However, as noted, its flexibility allows it to tackle

particularly complicated combinatorial problems. (References to papers on such problems,

some of which have used the canonical paths or multicommodity flows method, are given

in Chapter 5.)
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Chapter 5

Connection Between Sampling and Counting

In this chapter, we will describe an interesting application of rapidly mixing Markov chains

to the counting of combinatorial objects. The majority of these counting problems are

“hard”, and belong to the complexity class #P [55], which is analogous to the class NP of

“hard” decision problems. It is an open question whether all such counting problems are

efficiently computable (i.e. in polynomial time). However, randomised algorithms have

been developed that can approximately count (within arbitrarily small error), by using

the MCMC method.

Definition 5.1. A randomised approximation scheme for a counting problem is a ran-

domised algorithm that, given any error tolerance ε > 0, outputs an estimate N̂ of the

number of instances N , such that

P
(

(1− ε)N ≤ N̂ ≤ (1 + ε)N
)
≥ 3

4
. (5.1)

If the runtime of the algorithm is bounded by a polynomial in the size of the input length

n (e.g. number of vertices of a graph) and ε−1, then we call it a fully polynomial

randomised approximation scheme (FPRAS).

Remark 5.2. The tolerance 3
4 in the definition is mostly arbitrary. To achieve any

desired tolerance of 1 − η > 0 instead, it suffices to run an algorithm satisfying (5.1)

12dlog(η−1)e+1 times, and then taking the median. (The proof of this relies on Chernoff’s

inequality and can be found in [35, Lemma 6.1].)

A FPRAS has been shown to exist for some of the most difficult counting problems,

notably approximating the permanent of a 0-1 matrix (which is equivalent to counting the

number of perfect matchings in a bipartite graph) [31, 34], and approximating the volume

of a convex body in Rn [20]. Other examples include counting matchings [33], counting

0-1 knapsack solutions [47], and approximating intractable quantities in models used in

statistical physics [32]. For a more comprehensive treatment of the intimate connection

between approximate counting and sampling, see Jerrum [30].

At the core of these MCMC algorithms is a rapidly mixing Markov chain. The re-

mainder of this chapter will focus on the problem of counting the number of q-colourings

of a graph with maximum degree ∆. It is well-known that a colouring is always possible if

there are q ≥ ∆+1 colours. However, the exact counting problem is in #P. The existence

of a FPRAS when q ≥ 2∆ + 1 was shown by Jerrum [29]. A faster algorithm is exhibited

by Dyer and Greenhill [21]. A FPRAS for q > 11
6 ∆ was shown by Vigoda [56], and a
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slight improvement to this bound was obtained more recently in [11]. It remains an open

question whether a FPRAS always exists when q ≥ ∆ + 1.

We will provide a proof of the result when q ≥ 2∆ + 1 using path coupling, which was

first shown by Bubley and Dyer [7]. We will consider the (heat-bath) Glauber dynamics,

instead of the usual Metropolis chain used in the literature. The only difference is that

we will choose conditional on the set of permissible colours, avoiding the need to reject

invalid colours. Similar results are obtained.

Let G = (V,E) be a graph with n vertices, m edges, and maximum degree ∆. For

q ∈ Z+, let C = {1, 2, . . . , q} be a set of q colours, and Ω ⊆ CV be the set of all proper

vertex q-colourings of G (each colouring σ ∈ Ω is precisely a function from V to C). For a

colouring σ, let Nv(σ) = {σ(w) : {v, w} ∈ E} ⊆ C be the set of colours of the neighbours

of v. The main result of this chapter is the following theorem.

Theorem 5.3. If q ≥ 2∆ + 1, then there exists a FPRAS for estimating the number of

proper vertex q-colourings of G, with runtime bounded by

tmix(ε) ≤

⌈
1−∆/q

1− 2∆/q
n(log n+ log ε−1)

⌉
·

⌈
37m

ε2

⌉
. (5.2)

This will follow from combining Lemma 5.4 and Lemma 5.5. The term on the left

of (5.2) corresponds to the mixing time of a Markov chain to obtain an “almost uniform”

sample, and the term on the right gives the number of independent samples needed.

Consider the Glauber dynamics on Ω. Given the current state σ, a vertex v is selected

uniformly at random (with probability 1/n). A colour is then selected from the set of

permissible colours Cv(σ) = {c ∈ C : c /∈ Nv(σ)} uniformly at random (with probability

1/|Cv(σ)|) to recolour σ(v).

This is aperiodic, since we can always leave the colouring unchanged. This is also

irreducible, since we can move from σ to τ by sequentially recolouring each vertex (in

lexicographic order). For example, to recolour σ(v) to τ(v), we first recolour all neigh-

bouring vertices u > v with σ(u) = τ(v). (If q ≥ ∆ + 2, we have enough colours for this

to always be possible.) Furthermore, it can easily be verified that the chain is reversible

with respect to the uniform distribution π(σ) = |Ω|−1 for all σ ∈ Ω. Hence, this is the

stationary distribution by Proposition 2.6.

Lemma 5.4. The Glauber dynamics for sampling random proper q-colourings of a graph

G with n vertices and maximum degree ∆ satisfying q ≥ 2∆ + 1 is rapidly mixing, with

tmix(ε) ≤

⌈
1−∆/q

1− 2∆/q
n(log n+ log ε−1)

⌉
. (5.3)

Proof. We will apply the path coupling method from Section 3.2. Consider the Glauber

dynamics, described above, on the extended state space Ω̃ = CV of all q-colourings of the

graph G. Note that this is no longer irreducible. However, since all the extra non-proper
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colourings are transient states, the extended chain still converges to a unique stationary

distribution π, which is uniform on the set of all proper q-colourings Ω, and satisfies

π(σ) = 0 for any non-proper colouring σ (see [38, Proposition 1.26]).

For the underlying graph, connect two colourings σ, τ ∈ Ω̃ with an edge (of length 1)

if and only if they differ by one vertex. Thus, the path metric p(σ, τ) =
∑

v∈V 1{σ(v)=τ(v)}

counts the number of vertices that disagree.

Let σ, τ ∈ Ω̃ be two colourings that agree everywhere except at one vertex, say v.

Consider the following coupling (X,Y ) of one step of the chain, started at σ and τ

respectively. Choose a vertex w uniformly at random, and consider cases:

� If w = v, or w is not a neighbour of v: recolour w for both chains with the same colour,

chosen uniformly at random from the set of permissible colours Cw(σ) = Cw(τ).

� If w is a neighbour of v: let C−(v,w)
w (σ) (resp. C−(v,w)

w (τ)) be the set of permissible

colours for σ (resp. τ) at w, ignoring the edge from w to v. Since σ and τ agree

everywhere except at v, C−(v,w)
w (σ) = C−(v,w)

w (τ). Consider four subcases:

(i) σ(v), τ(v) /∈ C−(v,w)
w (σ): in this case, adding in the edge {w, v} will not change

the permissible colours at w. Hence, we can recolour w for both chains with the

same colour, chosen uniformly at random from Cw(σ) = Cw(τ).

(ii) σ(v), τ(v) ∈ C−(v,w)
w (σ): here Cw(σ) = C−(v,w)

w (σ) \ {σ(v)}, and by symmetry,

Cw(τ) = C−(v,w)
w (σ)\{τ(v)}. Hence, we can choose a colour c uniformly at random

from Cw(σ) to recolour σ(w). Use c to recolour τ(w) unless c = τ(v), in which

case use σ(v) to recolour τ(w) instead.

(iii) σ(v) /∈ C−(v,w)
w (σ), τ(v) ∈ C−(v,w)

w (σ): after adding back in the edge {w, v}, Cw(σ)

will have the extra colour τ(v) compared to Cw(τ). In this case, select a colour c

uniformly at random from Cw(σ) to recolour σ(w). Use c to recolour τ(w) unless

c = τ(v), in which case select another colour c′, independently and uniformly at

random, from Cw(τ) to recolour τ(w) instead.

Since |Cw(σ)| = |Cw(τ)|+ 1, we can check that each permissible colour in Cw(τ) is

indeed selected uniformly at random, with probability

1

|Cw(σ)|
+

1

|Cw(σ)|
· 1

|Cw(τ)|
=

1

|Cw(σ)|
· |Cw(τ)|+ 1

|Cw(τ)|
=

1

|Cw(τ)|
.

(iv) σ(v) ∈ C−(v,w)
w (σ), τ(v) /∈ C−(v,w)

w (σ): this is the same as the previous case (iii)

after swapping the roles of σ and τ .

After one step of the chain, the number of vertices that disagree either:

� Increases by 1 if w is a neighbour of v, and different colours are picked for τ(w) and

σ(w). In case (ii), this occurs with probability deg(v)
n . In case (iii), this occurs with

probability deg(v)
n · 1

|Cw(σ)| (this is the same for case (iv), swapping σ for τ).

� Decreases by 1 if w = v, with probability 1
n .

� Remains unchanged otherwise if w 6= v, and w is recoloured for both chains with

the same colour.
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Since deg(v) ≤ ∆, and |Cw(σ)| ≥ q−∆, using the inequality 1− x ≤ e−x for x ≥ 0 shows

that the expected path metric after one step is

Eσ,τ [ρ(X,Y )] ≤ 1− 1

n
+

∆

n
· 1

q −∆
= 1− 1

n

(
1− ∆

q −∆

)
≤ exp

(
− 1

n
· q − 2∆

q −∆

)
.

Since q > 2∆, the chain is contracting, with α = 1
n ·

1−2∆/q
1−∆/q . Therefore, Corollary 3.13 of

the path coupling theorem implies (5.3), as desired.

Lemma 5.5. Suppose that we have an almost uniform sampler p for proper q-colourings

of a graph G with runtime bounded by T (n, δ), where n is the number of edges of G and

δ > 0 is the tolerance. (That is, p satisfies ‖p− π‖TV < δ, where π is uniform on the set

of all proper q-colourings of G).

If G is a graph with n vertices, m edges, and maximum degree ∆ satisfying q ≥ ∆+1,

then for any ε > 0, there exists a randomised approximation scheme (5.1) for the number

of proper q-colourings of G, with runtime bounded by d37mε−2eT (n, ε/(6m)).

Proof. Let (V, ∅) = G0 < G1 < · · · < Gm−1 < Gm = G be any sequence of graphs, in

which Gi−1 is obtained from Gi by removing a single edge. Let Ω(Gi) denote the set of

all proper q-colourings of Gi. We can express the number of proper q-colourings of G as

|Ω(G)| = |Ω(Gm)|
|Ω(Gm−1)|

× |Ω(Gm−1)|
|Ω(Gm−2)|

× · · · × |Ω(G1)|
|Ω(G0)|

× |Ω(G0)|. (5.4)

Note that |Ω(G0)| = qn. By the self-reducibility of the problem, we will be able to estimate

|Ω(G)| by estimating each ratio in (5.4) with a Monte Carlo-style estimator. Let

ρi =
|Ω(Gi)|
|Ω(Gi−1)|

, 1 ≤ i ≤ m. (5.5)

Then |Ω(G)| = qnρ1ρ2 . . . ρm.

Observe that Ω(Gi) ⊆ Ω(Gi−1). Suppose that Gi−1 is obtained from Gi by removing

the edge {u, v}. Consider a colouring in Ω(Gi−1) \ Ω(Gi), which necessarily assigns the

same colour to u and v. This can be perturbed into a colouring in Ω(Gi) by recolouring u

with one of at least q−∆ ≥ 1 colours. Moreover, each colouring in Ω(Gi) can be obtained

in at most one way by such a perturbation. Thus, |Ω(Gi−1) \ Ω(Gi)| ≤ |Ω(Gi)|. Since

|Ω(Gi−1)| = |Ω(Gi)|+ |Ω(Gi−1) \ Ω(Gi)|, we deduce that 1
2 ≤ ρi ≤ 1.

Consider the following procedure to estimate ρi. Generate an almost uniform sample

σi from Ω(Gi−1) by running p with tolerance δ = ε/(6m). Let Zi be the Bernoulli random

variable 1{σi∈Ω(Gi)}, which has mean µi := E [Zi], and variance Var(Zi) = µi(1 − µi). If

πi−1 is uniform on Ω(Gi−1), then by definition of the total variation distance,

|µi − ρi| =
∣∣∣p(Ωi)−

|Ω(Gi)|
|Ω(Gi−1)|

∣∣∣ = |p(Ωi)− πi−1(Ωi)| ≤
ε

6m
. (5.6)
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Recalling that ρi ≥ 1
2 , this implies that(

1− ε

3m

)
ρi ≤ µi ≤

(
1 +

ε

3m

)
ρi. (5.7)

Thus, the sample mean Zi = 1
s

∑s
k=1 Z

(k)
i of sufficiently many independent copies

Z
(1)
i , Z

(2)
i , . . . , Z

(s)
i of Zi should provide a good estimate of ρi. More specifically, let

s = d37mε−2e. Since the Z
(k)
i are i.i.d. Bernoulli(µi) random variables,

Var(Zi)

µ2
i

=
µi(1− µi)

sµ2
i

≤ 2

s
− 1

s
=

1

s
. (5.8)

Consider the estimator N̂ = qnZ1Z2 · · ·Zm for |Ω(G)|. Since the Z
(k)
i are independent,

E
[
N̂
]

= qnµ1µ2 · · ·µm, which is close to |Ω(G)| by (5.7). Hence, its performance will

largely depend upon its variance. Using Var(Zi) = E
[
Z

2
i

]
− µ2

i ,

Var(Z1Z2 · · ·Zm)

(µ1µ2 · · ·µm)2
=

E
[
Z1Z2 · · ·Zm

]
µ2

1µ
2
2 · · ·µ2

m

− 1 =
m∏
i=1

(
1 +

Var(Zi)

µ2
i

)
− 1

By (5.8), and recalling that we chose s ≥ 37mε−2 samples, this is upper bounded by(
1 + 1

s

)m−1 ≤ exp
(
ε2

37

)
−1 ≤ ε2

36 , using the inequality ex/(k+1) ≤ 1+ x
k for any 0 ≤ x ≤ 1

and k ∈ Z+. Thus, by Chebyshev’s inequality (Theorem 1.2),

P
(∣∣∣∣Z1Z2 · · ·Zm

µ1µ2 · · ·µm
− 1

∣∣∣∣ > ε

3

)
≤ Var(Z1Z2 · · ·Zm)

µ2
1µ

2
2 · · ·µ2

m

· 9

ε2
≤ 1

4
.

Hence, with probability at least 3
4 , the following inequality holds:(

1− ε

3

)
qnµ1µ2 · · ·µm ≤ qnZ1Z2 · · ·Zm ≤

(
1 +

ε

3

)
qnµ1µ2 · · ·µm. (5.9)

Furthermore, using (5.7) and the inequalities
(
1 + ε

3m

)m ≤ eε/3 ≤ 1 + ε
2 again, also shows

that (
1− ε

2

)
ρ1ρ2 · · · ρm ≤ µ1µ2 · · ·µm ≤

(
1 +

ε

2

)
ρ1ρ2 · · · ρm. (5.10)

Since
(
1 + ε

3

) (
1 + ε

2

)
≤ 1 + ε, and

(
1− ε

3

) (
1− ε

2

)
≥ 1 − ε, combining the final two

inequalities (5.9) and (5.10) shows that with probability at least 3
4 , the estimator N̂ for

|Ω(G)| satisfies (1− ε)|Ω(G)| ≤ N̂ ≤ (1 + ε)|Ω(G)|.
Therefore, we have a FPRAS for the number of proper q-colourings. The total runtime

is bounded by the runtime to generate each almost uniform sample, which is at most

T (n, δ), multiplied by the number of independent samples s = d37mε−2e needed.
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Chapter 6

The Cutoff Phenomenon

In this chapter, we will describe the cutoff phenomenon, which describes how certain

Markov chains have been observed to show a very sharp transition to stationarity. In other

words, mixing occurs abruptly at, and not before, a certain point (akin to a “probabilistic

phase transition”), as illustrated in Figure 6.1.1. Proving that a Markov chain exhibits

a cutoff provides a rigorous stopping rule for MCMC samplers. It is also of theoretical

interest as a seemingly general phenomenon that is not yet well understood.

Section 6.1 will describe a motivating example of riffle shuffling, and give other ex-

amples of cutoff in the literature. Section 6.2 will provide and prove the equivalences of

various precise definitions of cutoff. In this chapter, we will denote a sequence of Markov

chains by (Ωn, Pn, πn)n∈Z+ . The standard notation will be used alongside an additional

index n, which is usually a parameter of increasing size or complexity of the chain.

6.1 Motivation

t
(n)
mix

0

1

t

dn(t)

Figure 6.1.1: The total variation distance of a sequence of chains that exhibits a cutoff
drops precipitously after a certain point. Prior to that, it is poorly mixed.

Recall the Gilbert-Shannon-Reeds model of the riffle shuffle of n cards in Example 3.22.

The method of strong stationary times was used to find that t
(n)
mix = O(log2 n). The paper

of Bayer and Diaconis [6] provides a far more precise description of this riffle shuffle.

We will summarise some of their key results that allow sharp bounds on the distance to

stationarity to be obtained and used to demonstrate a cutoff.

The paper generalises the riffle shuffle to an a-shuffle (the normal riffle shuffle is a

2-shuffle). Several equivalent representations of the a-shuffle are given, which are used to
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show that an a-shuffle followed by a b-shuffle has the same distribution as an ab-shuffle.

Using a very nice combinatoric argument, the exact probability of any arrangement of

cards after t shuffles (equivalent to a 2t-shuffle) is obtained.

Theorem 6.1 ([6, Theorem 1]). If a pack of n cards is riffle shuffled t times, then the

probability that the deck is in arrangement σ is 1
2tn

(
2t+n−r

n

)
, where r is the number of

rising sequences in σ.

(Recall from Example 3.22 that a rising sequence is a maximal subset of an arrange-

ment of cards consisting of successive face values when read in order.) By Theorem 6.1,

the number of rising sequences is a sufficient statistic for the permutation distribution of

the riffle shuffle. Since these are counted by the Eulerian numbers, which have well-known

asymptotics, an asymptotic expression for the distance to stationarity can be computed.

Theorem 6.2 ([6, Theorem 4]). Let t = 3
2 log2(n)+α, where α > 0 is a fixed real number.

Let c = 2α. Then, as n→∞,

dn(t) =
∥∥P tn(id, ·)− πn

∥∥
TV

= 1− 2Φ

(
−1

4c
√

3

)
+Oc

(
1

n1/4

)
.

Here πn is the uniform distribution on Sn, and Φ(x) =
∫ x
−∞

1√
2π
e−t

2/2 dt is the standard

normal cumulative distribution function.

Therefore, for sufficiently large n, dn(3
2 log2 n + α) → 0 as α → ∞, which shows an

abrupt transition to stationarity after 3
2 log2 n shuffles. Before this point, the deck is far

from uniform, since dn(3
2 log2 n−α)→ 1 as α→∞. Hence, it appears that 3

2 log2 n riffle

shuffles are, in this sense, necessary and sufficient to mix up a pack of n cards.

We will conclude this section by describing other instances of cutoff that have been

found in the literature. The cutoff phenomenon was first identified for the random trans-

positions chain (shuffling n cards by repeatedly swapping two cards) by Diaconis and

Shahshahani [16] using group representations, where a cutoff at 1
2n log n with window

n was found. Aldous and Diaconis [2] found that the top-to-random shuffle (repeatedly

inserting the top card into the deck randomly) also has the same cutoff point and window

(and also coined the term cutoff).

Diaconis’ survey [13] describes a wealth of other examples for random walks on finite

groups, including shuffling, the Ehrenfests’ urn, and the n-dimensional hypercube. For

example, the simple (lazy) random walk on the hypercube (also described in [38]) has a

cutoff at 1
2n log n with window n. It is suggested that the cutoff phenomenon may be

related to high multiplicity of the second eigenvalue.

Lubetzky and Sly [40] found that, with high probability, the simple random walk

on the random regular graph G ∼ G(n, d) (i.e. G is uniformly distributed over the set

of all d-regular graphs with n vertices) exhibits a cutoff at d
d−2 logd−1 n with window

√
log n. Chatterjee et al. [9] also found that the repeated averages chain (which, given

n real numbers, repeatedly replaces two numbers with their average) exhibits a cutoff at
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1
2n log2 n with window n

√
log n. A cutoff has also been found for the Glauber dynamics

for the Ising model from statistical physics [37, 42], which is the focus of the next chapter.

As a relatively recent discovery, there are still many open questions about what causes

cutoff. The product condition (Theorem 6.13) has been found to be necessary and suffi-

cient for cutoff for the class of birth-and-death chains [19]. Cutoff has also been proved in

less common distances (such as the separation and Lp distances) [15, 10]. More recently,

cutoff has been characterised for reversible chains in terms of the concentration of some

hitting time [5].

Rigorously proving cutoff is a difficult, delicate affair that requires precise upper and

lower bounds on the distance to stationarity. Many of the examples given above require

more sophisticated techniques, beyond that described in this thesis. The next chapter

will focus on proving cutoff for the Glauber dynamics for the mean-field Ising model.

6.2 Definitions of cutoff

In this section, we will give some precise definitions of cutoff that have appeared in the

literature. We will also provide some original proofs of their equivalences in order to unify

the various characterisations.

Definition 6.3. We say that a sequence of Markov chains (Ωn, Pn, πn)n∈Z+ exhibits a

cutoff if it satisfies either of the following:

(i) Let c > 0 be a fixed constant. Then

lim
n→∞

dn(dct(n)
mixe) = 0 if c > 1,

lim
n→∞

dn(bct(n)
mixc) = 1 if c < 1.

(6.1)

(ii) For any 0 < ε < 1/2,

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1. (6.2)

Proposition 6.4. If t
(n)
mix → ∞ as n → ∞, then conditions (i) and (ii) for cutoff given

in Definition 6.3 are equivalent.

Proof. Suppose that (i) holds. Let 0 < ε < 1/2 and δ > 0. Then for sufficiently large n,

dn(d(1+δ)t
(n)
mixe) < ε, and hence t

(n)
mix(ε) ≤ (1+δ)t

(n)
mix+1. Similarly, dn(b(1−δ)t(n)

mixc) > 1−ε,
which implies that t

(n)
mix(1− ε) ≥ (1− δ)t(n)

mix − 1. Therefore, since t
(n)
mix(ε) ≥ t(n)

mix(1− ε) for

0 < ε < 1/2, this shows that

1 ≤
t
(n)
mix(ε)

t
(n)
mix(1− ε)

≤
1 + δ + (1/t

(n)
mix)

1− δ − (1/t
(n)
mix)

.

By assumption, 1/t
(n)
mix tends to zero as n tends to infinity. Thus, taking the limit as δ → 0

shows that limn→∞
t
(n)
mix(ε)

t
(n)
mix(1−ε)

= 1 by the sandwich theorem.
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Conversely, suppose that (ii) holds. Let 0 < ε < 1/2. Then for any δ > 0 and

sufficiently large n, t
(n)
mix(ε) < (1 + δ)t

(n)
mix(1− ε). Since t

(n)
mix(1− ε) ≤ t(n)

mix, by definition of

the mixing time, this shows that limn→∞ dn(d(1 + δ)t
(n)
mixe) ≤ ε. Since this holds for all

0 < ε < 1/2, limn→∞ dn(d(1 + δ)t
(n)
mixe) = 0. The proof for the other side of the cutoff

proceeds analogously using t
(n)
mix(1− ε) > (1− δ)t(n)

mix(ε) for sufficiently large n.

Remark 6.5. The definition of cutoff in condition (ii) may be slightly relaxed. We

say that a sequence of Markov chains (Ωn, Pn, πn)n∈Z+ exhibits a pre-cutoff if, for any

0 < ε < 1/2,

lim sup
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

<∞. (6.3)

It is clear that having a pre-cutoff is a necessary condition for cutoff. However, an example

of a chain that exhibits a pre-cutoff but not a cutoff has been constructed by Aldous (see

Figure 18.2 of [38]). Hence, having a pre-cutoff is not sufficient for having a cutoff.

The next definition allows us to specify the size of the window at which cutoff occurs.

Definition 6.6. Let (wn)n∈Z+ be a sequence of positive numbers. Then we say that

the sequence of Markov chains (Ωn, Pn, πn)n∈Z+ exhibits a cutoff with window wn if

wn = o(t
(n)
mix), and it satisfies either of the following:

(i)

lim
α→∞

lim sup
n→∞

dn(dt(n)
mix + αwne) = 0,

lim
α→∞

lim inf
n→∞

dn(bt(n)
mix − αwnc) = 1.

(6.4)

(ii) t
(n)
mix(ε) = t

(n)
mix(1− ε) + O(wn): that is, for any 0 < ε < 1/2, there exists a constant

cε > 0 such that for all n ∈ Z+,

t
(n)
mix(ε)− t(n)

mix(1− ε) ≤ cεwn. (6.5)

Proposition 6.7. If t
(n)
mix →∞ and wn →∞ as n→∞, then conditions (i) and (ii) for

cutoff with window wn given in Definition 6.6 are equivalent.

Proof. Suppose that (i) holds. Let 0 < ε < 1/2. Then there exists a real A and positive

integer N (depending only on ε) such that dn(dt(n)
mix + αwne) < ε for all α ≥ A and

n > N . Hence, t
(n)
mix(ε) ≤ t

(n)
mix + Awn + 1. Similarly, there exists a real B ≤ A such that

t
(n)
mix(1− ε) ≥ t(n)

mix +Bwn − 1. Therefore, for sufficiently large n,

t
(n)
mix(ε)− t(n)

mix(1− ε) ≤ (A−B)wn + 2 ≤ (A−B + 2)wn.

The last inequality follows from the assumption that wn → ∞. Hence, we can choose a

constant cε such that t
(n)
mix(ε)− t(n)

mix(1− ε) ≤ cεwn for all n ∈ Z+, by setting cε to be the

greater of (A−B + 2) and maxn=1,2,...,N

{
t
(n)
mix(ε)−t(n)

mix(1−ε)
wn

}
.
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Conversely, suppose that (ii) holds. Let 0 < ε < 1/2. Then for some constant cε > 0,

t
(n)
mix(ε) ≤ t(n)

mix(1− ε) + cεwn ≤ t(n)
mix + cεwn, for all n ∈ Z+.

This shows that d(dt(n)
mix + cεwne) ≤ ε. Since d(dt(n)

mix + αwne) ≤ d(dt(n)
mix + cεwne) for all

α > cε, it follows that limα→∞ lim supn→∞ d(dt(n)
mix + αwne) ≤ ε. Since this holds for all

0 < ε < 1/2, the first part of (i) holds. The second part of (i) follows analogously.

Proposition 6.8. If a sequence of Markov chains (Ωn, Pn, πn)n∈Z+ exhibits a cutoff with

window wn as in condition (i) (resp. (ii)) of Definition 6.6, then it also exhibits a cutoff

as in condition (i) (resp. (ii)) of Definition 6.3.

Proof. Suppose that we have a cutoff with window wn = o(t
(n)
mix) as in condition (ii). Then

for any 0 < ε < 1/2, there exists a cε > 0 such that for all n ∈ Z+,

0 ≤ 1−
t
(n)
mix(1− ε)
t
(n)
mix(ε)

≤ cε
wn

t
(n)
mix(ε)

.

First, suppose that 0 < ε < 1/4. Since t
(n)
mix ≤ t

(n)
mix(ε), it follows that wn = o(t

(n)
mix(ε)),

and hence limn→∞
wn

t
(n)
mix(ε)

= 0. Therefore, limn→∞
t
(n)
mix(ε)

t
(n)
mix(1−ε)

= 1 by sandwiching. Next, for

1/4 ≤ ε < 1/2, this follows from the first part, since 0 < ε
2 < 1/4, and

1 ≤
t
(n)
mix(ε)

t
(n)
mix(1− ε)

≤
t
(n)
mix(ε/2)

t
(n)
mix(1− ε/2)

.

Therefore limn→∞
t
(n)
mix(ε)

t
(n)
mix(1−ε)

= 1 for all 0 < ε < 1/2, so we have cutoff as in condition (ii).

If t
(n)
mix → ∞ and wn → ∞, then conditions (i) and (ii) for both definitions are

equivalent. Otherwise, it can also be shown directly that condition (i) for a cutoff with

window implies condition (i) for a cutoff, however we will omit the details.

A cutoff has been defined quite conceptually so far in terms of the mixing time, for

which we usually do not have an explicit expression. The following definitions allow us

to specify the point at which cutoff occurs, and hence are more useful in practice.

Definition 6.9. Consider a sequence of Markov chains (Ωn, Pn, πn)n∈Z+ . Let (an)n∈Z+

and (wn)n∈Z+ be sequences of positive numbers.

(i) The sequence of chains exhibits a cutoff at an if, given any fixed constant c > 0,

lim
n→∞

dn(dcane) = 0 if c > 1,

lim
n→∞

dn(bcanc) = 1 if c < 1.
(6.6)
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(ii) The sequence of chains exhibits a cutoff at an with window wn if wn = o(an), and

lim
α→∞

lim sup
n→∞

dn(dan + αwne) = 0,

lim
α→∞

lim inf
n→∞

dn(ban − αwnc) = 1.
(6.7)

Proposition 6.10. Let (Ωn, Pn, πn)n∈Z+ be a sequence of Markov chains. Let (an)n∈Z+

and (wn)n∈Z+ be sequences of positive numbers. Assume that an → ∞ and wn → ∞ as

n→∞.

(i) If the sequence exhibits a cutoff at an as in Definition 6.3, then it exhibits a cutoff

as in Definition 6.9.

(ii) If the sequence exhibits a cutoff at an with window wn as in Definition 6.6, then it

exhibits a cutoff with window wn as in Definition 6.9. Furthermore, it exhibits a

cutoff at an.

In both cases, t
(n)
mix = (1 + o(1))an.

Proof. (i) Let δ > 0 and 0 < ε < 1. By using a similar argument as for the proof of

condition (i) of Proposition 6.4, we deduce that for sufficiently large n (depending on ε),

t
(n)
mix(ε) ≤ (1 + δ)an + 1, and t

(n)
mix(1− ε) ≥ (1− δ)an − 1. (6.8)

In particular, this implies that for all 0 < ε < 1/2,

1 ≤
t
(n)
mix(ε)

t
(n)
mix(1− ε)

≤ 1 + δ + (1/an)

1− δ − (1/an)
.

By assumption, limn→∞
1
an

= 0. Thus, sending δ → 0 shows that limn→∞
t
(n)
mix(ε)

t
(n)
mix(1−ε)

= 1

by sandwiching. Hence, we have cutoff as in (6.2), or equivalently (6.1). In particular,

upper and lower bounds on
t
(n)
mix
an

can be obtained from (6.8) by taking ε = 1/4 and ε = 3/4

respectively. This shows that for sufficiently large n,

1− δ − 1

an
≤
t
(n)
mix

an
≤ 1 + δ +

1

an
.

Taking the limit as δ → 0 shows that limn→∞
t
(n)
mix
an

= 1, or equivalently t
(n)
mix = (1+o(1))an.

(ii) A similar argument as for the proof of condition (i) for Proposition 6.7 implies

that there exist real constants A and B such that, for sufficiently large n,

an +Bwn − 1 ≤ t(n)
mix ≤ an +Awn + 1, (6.9)
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By rearranging, this is equivalent to B wn
an
≤ t

(n)
mix
an
− 1 ≤ A wn

an
. Since wn = o(an),

limn→∞
wn
an

= 0. Therefore, limn→∞
t
(n)
mix
an

= 1, or equivalently t
(n)
mix = (1+o(1))an, by sand-

wiching. Moreover, wn

t
(n)
mix

= wn
(1+o(1))an

, which tends to zero as n→∞, and so wn = o(t
(n)
mix).

Next, (6.9) also implies that

d(dt(n)
mix +αwne) ≤ d(dan+(α+B−1)wne), d(bt(n)

mix +αwnc) ≥ d(ban+(α+A+1)wnc).

Taking limits and using (6.7) shows that we have a cutoff with window wn, as in (6.4).

Finally, we will show that a cutoff at an with window wn implies a cutoff at an. We

have shown that t
(n)
mix = (1 + o(1))an. Suppose that c > 1. Then for sufficiently large n,

ct
(n)
mix = c(1 + o(1))an > c̃an, where c̃ = c

(
1− c−1

2

)
> 1. Thus, dn(dct(n)

mixe) ≤ dn(dc̃ane).
Since the right hand side tends to zero as n→∞ by (6.6), limn→∞ dn(dct(n)

mixe) = 0. The

other side of the cutoff when c < 1 follows analogously.

Remark 6.11. (i) Proposition 6.10 shows that if a sequence exhibits a cutoff at an and

at bn, then the two cutoff points are asymptotically equivalent: an = (1 + o(1))bn.

(ii) However, (6.5) suggests that two cutoff windows do not necessarily have to be of

the same order. Any cutoff window can be made wider as long as it is still o(t
(n)
mix).

Thus, it might interesting to ask what the widest or narrowest a window can be.

(iii) While the assumptions that t
(n)
mix, an, and wn tend to infinity are not necessary to

define cutoff, they were needed to prove the equivalences of the various definitions.

This is an artefact of working in discrete time (i.e. because of rounding). Without

these assumptions, the most that can be said in general about two cutoff points an

and bn is that the limit points of |an − bn| all lie in the interval [0, 1] (see [15, p.4]).

We will describe a simple demonstration of cutoff where the mixing time is bounded.

Example 6.12. Let (Ωn, Pn, πn)n∈Z+ denote a random walk (with self-loops) on the

complete graph with n vertices, where Pn(i, j) = 1
n for 1 ≤ i, j ≤ n. Since Pn is symmetric,

by Remark 2.7, this has uniform stationary distribution πn(i) = 1
n for 1 ≤ i ≤ n.

Here dn(0) = maxx∈Ωn ‖δx − π‖TV = 1 − 1
n , and dn(1) = 0. Therefore, t

(n)
mix = 1 for

all n ∈ Z+, which does not tend to infinity. However, there is still a sharp cutoff since

dn(dce)→ 0 for c > 1, and dn(bcc)→ 1 for c < 1, so condition (i) of Definition 6.3 holds.

Furthermore, there is also a cutoff with window wn = 1
n , since d(d1 + α

ne) = 0 for

α > 0, and d(b1 + α
nc) = 1 for α < 0, so condition (i) of Definition 6.6 holds. Note that

any other window tending to zero will also work, such as vn = 1
logn (which is wider).

In this case, it is easy to check that condition (ii) of both cutoff definitions also hold.

We will conclude this section by showing that a necessary condition for a reversible

chain to have a cutoff is that the product of the mixing time and spectral gap (from Defi-

nition 4.2) tends to infinity (the “product condition”). Peres conjectured that this would
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be sufficient in many settings (but not all; see [38, Example 18.7] for a counterexample).

So far, this conjecture has been confirmed for birth-and-death chains [19, 15].

Theorem 6.13. Suppose that (Ωn, Pn, πn)n∈Z+ is a sequence of reversible, irreducible,

and aperiodic chains with mixing times (t
(n)
mix)n∈Z+ and (absolute) spectral gaps (γ

(n)
∗ )n∈Z+.

Then the chains exhibit a pre-cutoff (and hence cutoff) only if t
(n)
mix ·γ

(n)
∗ →∞ as n→∞.

Proof. We show the contrapositive. Suppose that t
(n)
mix · γ

(n)
∗ is asymptotically bounded

from above by some real C > 0. Fix 0 < ε < 1
2 . Since t

(n)
mix(ε) ≥

(
1

γ
(n)
∗
− 1
)

log(2ε)−1 from

Theorem 4.6, and t
(n)
mix(1− ε) ≤ t(n)

mix, this implies that for sufficiently large n,

t
(n)
mix(ε)

t
(n)
mix(1− ε)

≥
t
(n)
mix(ε)

t
(n)
mix

≥

(
1

γ
(n)
∗ t

(n)
mix

− 1

t
(n)
mix

)
log(2ε)−1 ≥

(
1

C
− 1

)
log(2ε)−1.

As ε tends to zero, the right hand side tends to infinity. Therefore, the ratio of the mixing

times is unbounded, and there is no pre-cutoff (and hence there is no cutoff).

Remark 6.14. (i) It is useful to use Theorem 6.13 to prove that there is no cutoff by

showing that the product condition fails to hold (i.e. if t
(n)
mix · γ

(n)
∗ = O(1)).

(ii) For the (lazy) random walk on the n-cycle, Examples 3.4 and 3.5 showed that for

some constants c1, c2 > 0, we have c1n
2 ≤ t

(n)
mix ≤ c2n

2. Moreover, Example 4.7

showed that γ
(n)
∗ = O(n−2). Hence, t

(n)
mix · γ

(n)
∗ = O(1), which is bounded. There-

fore, there is no cutoff, and we conclude that the transition to stationarity occurs

gradually around order n2 steps.

(iii) For the (lazy) random walk on the n-dimensional hypercube, Example 3.6 showed

that t
(n)
mix = O(n log n), and Example 4.8 showed that γ

(n)
∗ = O(n−1). Hence, their

product tends to infinity. Indeed, it can be shown that this random walk exhibits a

cutoff, using a slightly more sophisticated coupling (see [38, Theorem 18.3]).
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Chapter 7

The Mean-Field Ising Model

Figure 7.0.1: Ising model on the 250×250 grid at high, critical, and low temperatures.

In this chapter, we will analyse the Ising model, which is a widely-studied model of

magnetism and phase transitions from statistical physics. Figure 7.0.1 displays illustrative

samples at three distinct temperatures, which I generated by Glauber dynamics using

Python. The normalisation constant of the Ising model, known as the partition function,

can be used to compute almost all physical properties related to the system [32]. However,

its intractability means that the Ising model is, in general, not exactly solvable.

Hence, MCMC techniques (see Chapter 5) have been found to be extremely useful. We

will focus on analysing the mixing time of the Glauber dynamics, which is one of the most

popular and widely used methods for sampling the Ising model. Apart from providing

practical guarantees of efficiency, this topic presents incredibly interesting connections to

fields such as probability theory, statistical physics, and complexity theory.

Section 7.1 will describe the background of the Glauber dynamics. The remaining

sections will focus on the mean-field Ising model, which enjoys a particularly high degree

of symmetry since the underlying geometry is effectively removed. The aim will be to

describe its distinct behaviour, closely following Levin, Luczak, and Peres [37].

At high temperatures, the Glauber dynamics for the mean-field Ising model is rapidly

mixing and exhibits a cutoff (Section 7.2). At the critical temperature, the chain is rapidly

mixing and does not exhibit a cutoff (Section 7.3). At low temperatures, the chain mixes

exponentially slowly and does not exhibit a cutoff (Section 7.4).

Other related work includes a more precise analysis around the critical window by

Ding, Lubetzky and Peres [18]. More recently, Lubetzky and Sly have resolved funda-

mental open problems for the Glauber dynamics for the Ising model on the lattice (where
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the underlying geometry is non-trivial) by establishing a cutoff in the high temperature

regime [42], and determining the critical mixing rate [41]. More recently, they have also

shown that cutoff occurs on any geometry at high enough temperatures [43]. This sup-

ports a conjecture of Peres [38, Section 23.2] on the universality of the cutoff phenomenon.

7.1 Glauber dynamics for the Ising model

The Ising model on an underlying graph G = (V,E) is defined as follows. Its set of

possible configurations is Ω = {±1}V , where each state is an assignment of a spin of +1

or −1 to each vertex in V . The probability that the system is in a configuration σ ∈ Ω is

given by the Gibbs distribution

µ(σ) :=
1

Z(β)
exp

βJ ∑
{v,w}∈E

σ(v)σ(w) + h
∑
v∈V

σ(v)

 . (7.1)

The parameter β > 0 represents inverse temperature, h is the external field, and J is the

interaction strength. The partition function Z(β) is the normalising constant. We will

consider the ferromagnetic (i.e. attractive) case J = 1, and with no external field h = 0.

We will consider the (single-site, heat-bath) Glauber dynamics for the Ising model.

At each step, a vertex v ∈ V is chosen uniformly at random, and its spin is updated

according to the Gibbs distribution µ, conditioned on the spins of all the other vertices.

Let Ω(σ, v) = {τ ∈ Ω : σ(w) = τ(w) ∀w 6= v} be the set of configurations agreeing

with σ everywhere except at v, N (v) = {w ∈ V : {v, w} ∈ E} be the set of neighbours of

v, and S(σ, v) =
∑

w∈N (v) σ(w). Given that v is selected, the probability that its spin is

updated to +1 and −1 is given by p+(S(σ, v)) and p−(S(σ, v)) respectively, where

p+(s) :=
eβs

eβs + e−βs
=

1 + tanh(βs)

2
, p−(s) :=

e−βs

eβs + e−βs
=

1 + tanh(−βs)
2

. (7.2)

This follows from a routine calculation using Bayes’ formula. Hence, the transition matrix

of the Glauber dynamics can be explicitly written as

P (σ, τ) =
1

n

∑
v∈V

1 + tanh(β τ(v)S(σ, v))

2
· 1{σ(w)=τ(w) ∀w 6=v}. (7.3)

(By [22], this heat-bath chain has non-negative eigenvalues.) The chain is clearly irre-

ducible and aperiodic. Moreover, it can also be easily verified that the detailed balance

equations µ(σ)P (σ, τ) = µ(τ)P (τ, σ) hold for all σ, τ ∈ Ω. Hence, the chain is reversible

with respect to the Gibbs distribution µ (7.1), which is therefore the unique stationary

distribution.

Remark 7.1. Much more can be said about Gibbs measures and the Glauber dynamics

on spin systems on (countably infinite) lattices that is beyond the scope of this thesis.

For example, refer to the survey of Martinelli [45].
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Theorem 7.2. Suppose that G has n vertices and maximum degree ∆. If ∆ tanh(β) < 1,

then the Glauber dynamics for the Ising model on G is rapidly mixing, with

tmix(ε) ≤

⌈
n(log n+ log(ε−1))

1−∆ tanh(β)

⌉
. (7.4)

In particular, since tanh(x) ≤ x for x > 0, this holds whenever β < 1
∆ .

Proof. We will use the path coupling method from Section 3.2. By identifying each spin

with a “colour”, the procedure is similar to the one for sampling colourings (Lemma 5.4

in Chapter 5). Recall that the path metric dist(σ, τ) =
∑

v∈V 1{σ(v)=τ(v)} counts the

vertices with different spins. We want to construct a coupling (X,Y ) of the chain started

at two configurations σ and τ that only differ at one vertex, say v, that is contracting.

Choose a vertex w uniformly at random. Let U be an independent Uniform(0, 1)

random variable, which we will use as a common source of randomness to update the spin

at w by the following:

X(w) =

+1 if 0 ≤ U ≤ p+(S(σ,w)),

−1 if p+(S(σ,w)) < U ≤ 1;
Y (w) =

+1 if 0 ≤ U ≤ p+(S(τ, w)),

−1 if p+(S(τ, w)) < U ≤ 1.

Thus, we can always update both chains with the same spin, except when w is adjacent

to v. In this case, assume that σ(v) = −1 and τ(v) = +1 without loss of generality, so

that 0 ≤ p+(S(σ,w)) ≤ p+(S(τ, w)) ≤ 1. Hence, the chains will have different spins with

probability
[
p+(S(τ, w)) − p−(S(σ,w))

]
= 1

2

[
tanh(β(S(σ,w) + 2)) + tanh(βS(σ,w))

]
.

Using calculus, this can be shown to be upper bounded by tanh(β). Since dist(X,Y )

decreases by one only if w = v, and can increase by one only if w ∈ N (v),

Eσ,τ [dist(X,Y )] ≤ 1− 1

n
+

1

n

∑
w∈N (v)

[
p+(S(τ, w))−p+(S(σ,w))

]
≤ 1− 1−∆ tanh(β)

n
.

(7.5)

Note that 1− 1−∆ tanh(β)
n ≤ exp

(
−1−∆ tanh(β)

n

)
. If α = 1−∆ tanh(β)

n > 0, then the chain is

contracting for adjacent configurations (i.e. satisfies (3.15)). Therefore, Corollary 3.13 of

the path coupling theorem implies (7.4), as desired.

Remark 7.3. Establishing the contraction condition Eσ,τ [dist(X,Y )] ≤ e−α for some

α > 0 is the key part of the proof of Theorem 7.2. This condition is closely related to

the Dobrushin-Shlosman condition from statistical physics (which implies the uniqueness

of the Gibbs measure on a countably infinite state space). See [28, 8] for more details on

the connection between path coupling and the Dobrushin-Shlosman condition.
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7.2 Rapid mixing and cutoff at high temperatures

For the rest of this chapter, we will focus on the mean-field Ising model on the complete

graph on n ≥ 2 vertices Kn, also known as the Curie-Weiss model (see Figure 7.2.1). Let

the vertex set be V = {1, 2, . . . , n}.

1

2

3

4

5

6

7

8

Figure 7.2.1: Mean-field Ising model on the complete graph Kn (here n = 8). Each
vertex is associated a spin in {±1}.

For convenience, we will rescale the inverse temperature parameter β, so that the

Gibbs distribution µn takes the following form

µn(σ) =
1

Z(β)
exp

β
n

∑
1≤i<j≤n

σ(i)σ(j)

 . (7.6)

In other words, β now corresponds to an inverse temperature parameter of β̃ = β
n in

the original definition (7.1). Since ∆ = n − 1 for Kn, Theorem 7.2 immediately implies

that the Glauber dynamics on Kn is rapidly mixing, with t
(n)
mix = O(n log n), whenever

β < n
n−1 . In particular, this holds if β < 1. The main result of this section will be show

that there is actually a cutoff in this high temperature regime.

Theorem 7.4. If β < 1, then the Glauber dynamics for the Ising model on Kn has a

cutoff at n logn
2(1−β) with window n. That is, from Definition 6.9,

lim
α→∞

lim sup
n→∞

dn

(⌈ n log n

2(1− β)
+ αn

⌉)
= 0,

lim
α→∞

lim inf
n→∞

dn

(⌊ n log n

2(1− β)
− αn

⌋)
= 1.

(7.7)

This was first proved by Levin et al. [37], and our aim will be to provide an exposition

of their key ideas. The related paper of Ding et al. [18], and the talk of Levin [36] offer

additional insights. The main technique used is coupling, which is described in Section 3.1.
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Preliminaries for the proof of Theorem 7.4

Define the normalised magnetisation (or mean magnetisation) by

S(σ) :=
1

n

n∑
i=1

σ(i). (7.8)

Let (Xt)t∈N be the Glauber dynamics on Kn with stationary distribution µn (7.6). Given

that a vertex i has been selected, its spin is updated from σ(i) to +1 or −1 with prob-

abilities p+(S(σ) − σ(i)
n ) and p−(S(σ) − σ(i)

n ) respectively, by (7.2). Hence, the mag-

netisation chain (St)t∈N, where St := S(Xt), is also a Markov chain on the states

ΩM := {−1,−1 + 2
n , . . . , 1−

2
n , 1}, with stationary distribution πn, and transition proba-

bilities

PM (s, s′) =


1−s

2 p+(s+ 1
n) if s′ = s+ 2

n ,

1+s
2 p−(s− 1

n) if s′ = s− 2
n ,

1− 1+s
2 p−(s− 1

n)− 1−s
2 p+(s− 1

n) if s′ = s.

(7.9)

(By symmetry, the distributions of (St)t∈N and (−St)t∈N are the same.) This is a projec-

tion of the Glauber dynamics Xt (see [38, Section 2.3.1]) onto a birth-and-death chain,

where we identify configurations with the same magnetisation. The associated probabil-

ities are given by the pushforward measure (e.g. πn = µnS
−1). We will find that the

mixing time of (Xt)t∈N is mainly determined by the mixing time of (St)t∈N.

Using the mean value theorem for tanh(x), which has positive derivative 1/ cosh2(x),

shows that the transition probabilities of St (7.9) take on the following simplified forms:

PM (s, s′) =


1−s

4 (1 + tanh(βs)) +O(n−1) if s′ = s+ 2
n

1+s
4 (1− tanh(βs)) +O(n−1) if s′ = s− 2

n

1
2(1 + s tanh(βs))−O(n−1) if s′ = s.

(7.10)

Thus, the holding probability PM (s, s) is bounded from above by 1
2(1 + tanh(β)) < 1,

uniformly in s and n. It can also be deduced that PM (s, s) is uniformly bounded away

from 0. Furthermore, from [37, (2.13)], an expression for the drift of (St)t∈N is given by

E [St+1 | St = s] = (1− n−1)s+ fn(s)− θn(s), where

fn(s) =
1

2n
[tanh(β(s+ n−1)) + tanh(β(s− n−1))],

θn(s) =
s

2n
[tanh(β(s+ n−1))− tanh(β(s− n−1))].

(7.11)

The behaviour of the hyperbolic tangent function will be crucial for precisely tracking the

moments of the magnetisation chain in order to establish cutoff. Using tanh(x) ≤ x for

x ≥ 0, and the symmetry of (St)t∈N and (−St)t∈N, with (7.11) shows that

E [ |St+1| − |St| | St] ≤
|St|(β − 1)

n
, |St| > 1/n. (7.12)
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(See [37, (2.15)–(2.18)]. Without the absolute values, (7.12) holds for all St ≥ 0.) There-

fore, if β ≤ 1, the chain (|St|) has non-positive drift whenever |St| > 1/n.

Next, we will define a monotone coupling (Xt, X̃t)t∈N of two copies of the Glauber

dynamics (Xt)t∈N and (X̃t)t∈N, started at σ0 and σ̃0 respectively. This is essentially the

coupling used in the proof of Theorem 7.2, where a common source of randomness is used

to update the same vertex for both chains with the correct marginal probabilities. Let

(St)t∈N and (S̃t)t∈N denote their magnetisation chains, started at s and s̃.

Consider the partial order on Ω where σ ≤ σ̃ if and only if σ(i) ≤ σ(i) for all i. If

Xt ≤ X̃t, then Xu ≤ X̃u for all u ≥ t (hence why this is called a monotone coupling).

This is because the function p+ (7.2) used to update the spins is monotone increasing.

We will collect some technical lemmas about the magnetisation chain that will be

referred to later. (We will omit proofs, and these can be skipped for the main results.)

Lemma 7.5 ([37]). Let ρ := 1− 1−n tanh(β/n)
n .

(i) (Lemma 2.2). For the monotone coupling, Eσ,σ̃
[
|St − S̃t|

]
≤ 2ρt.

(ii) (Lemma 2.3). 0 ≤ Es [S1]− Es̃ [S1] ≤ ρ(s− s̃) for any s, s̃ ∈ ΩM with s ≥ s̃.
(iii) (Prop. 2.7). If β < 1, then Vars(St) = O(n−1). If β = 1, then Vars(St) = O(tn−2).

(iv) (Lemma 2.8). For any subset A of vertices, let Mt(A) := 1
2

∑
i∈AXt(i). If β < 1,

then for all A and σ ∈ Ω,

(a) |Eσ [St] | ≤ 2e−(1−β)t/n.

(b) |Eσ [Mt(A)] | ≤ |A|e−(1−β)t/n and Var(Mt(A)) = O(n).

(c) Eσ [|Mt(A)|] ≤ ne(1−β)t/n +O(
√
n).

Finally, the next result, used in [18], allows for stopping times for processes with

non-positive drift (such as the magnetisation chain, if St ≥ 0, from (7.12)) to be bounded.

Lemma 7.6 ([38, Proposition 17.20]). A stochastic process (Wt)t∈N is a supermartin-

gale if E [|Wt|] < ∞ and E [Wt+1 |W0, . . . ,Wn] ≤ Wn. Let (Wt)t∈N be a non-negative

supermartingale and τ be a stopping time such that

(i) W0 = k;

(ii) |Wt+1 −Wt| ≤ B for some constant B > 0; and

(iii) Var(Wt+1 |W0, . . . ,Wt) > σ2 for some constant σ2 > 0 on the event {τ > t}.
If u > 4B2

3σ2 , then Pk (τ > t) ≤ 4k
σ
√
t
.

For example, let (Wt)t∈N be an unbiased simple random walk on Z with holding

probability b < 1, starting at k > 0. This satisfies |Wt+1 − Wt| ≤ 1, and Var(Xt) =

1−b > 0. If τ is the first time that Wt hits zero, then Lemma 7.6 implies that Pk (τ > t) =

O(t−1/2). (In this case, the same bound can be obtained using less technical machinery,

by modifying the argument of [38, Corollary 2.28] to account for the holding probability.)

In fact, the original argument of [37] relies on the comparison to such an unbiased

simple random walk. However, this lemma makes explicit the dependence on a variance

that is uniformly bounded away from zero.
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Proof of Theorem 7.4 – upper bound of cutoff

The proof proceeds in three stages. In the first stage, we will show that the Glauber

dynamics reaches a “nice” starting configuration after a short burn-in period of order n−1.

In the second stage, we will show that two copies of the Glauber dynamics can be coupled,

such that their magnetisations will match with high probability in n logn
2(1−β) +O(n−1) steps.

In the final stage, this will boosted into full mixing of the Glauber dynamics after an

additional order n−1 steps, by coupling their associated two-coordinate chains.

Stage 1: Burn-in phase.

The following lemma allows us to consider the distance to stationarity starting from a

“nice” set. The proof relies on the triangle inequality and the Markov property; however,

it will be omitted for brevity.

Lemma 7.7 ([37, Lemma 3.3]). For any subset Ω0 ⊆ Ω,

dn(t0 + t) = max
σ∈Ω
‖P (Xt0+t ∈ ·)− µn‖TV

≤ max
σ0∈Ω0

‖P (Xt ∈ ·)− µn‖TV + max
σ∈Ω

Pσ (Xt0 /∈ Ω0) .
(7.13)

To prepare for the two-coordinate chain argument in Stage 3, we will want to start

from a configuration in the following set, whose magnetisation is not too extreme:

Ω0 :=

{
σ ∈ Ω : |S(σ)| ≤ 1

2

}
. (7.14)

Observe that Pσ (Xθ0n /∈ Ω0) = Pσ (|Sθ0n| > 1/2). By Lemma 7.5 (iv) (a), there exists

a constant θ0 > 0 such that |Eσ [Sθ0n] | ≤ 1
4 . Therefore, by Chebyshev’s inequality

(Theorem 1.2), and Lemma 7.5 (iii),

max
σ∈Ω

Pσ (Xθ0n /∈ Ω0) = Pσ (|Sθ0n| > 1/2)

≤ Pσ
(∣∣Sθ0n − Eσ [Sθ0n]

∣∣ > 1/4
)
≤ 16 Varσ(Sθ0n) = O(n−1). (7.15)

Stage 2: Magnetisation phase.

Let tn := n logn
2(1−β) . The following shows that two Glauber dynamics can be coupled

such that their magnetisations will agree with high probability in tn +O(n−1) steps.

Lemma 7.8. Let τmag := min{t ∈ N : St = S̃t} be the coalescence time of two magnetisa-

tion chains. For any starting configurations σ and σ̃, there exists a coupling (Xt, X̃t)t∈N

such that for some constant c > 0, independent of σ, σ̃, and n,

Pσ,σ̃ (τmag > tn + αn) ≤ c√
α
. (7.16)

Proof. Let (Xt, X̃t)t∈N be the monotone coupling of the Glauber dynamics started at σ

and σ̃ respectively, and (St)t∈N and (S̃t)t∈N be their corresponding magnetisation chains.
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By Lemma 7.5 (i), there exists a constant c1 > 0 such that

Eσ,σ̃
[
(n/2) |Stn − S̃tn |

]
≤ c1

√
n. (7.17)

(Thus, the dominant term in the cutoff tn will be from driving the expected difference

in magnetisation to order
√
n.) Suppose that the two magnetisation chains have not

coalesced by tn. To prevent St and S̃t from “jumping over” each other, we will analyse up

to τ1 := min{t ≥ tn : (n/2) |St − S̃t| ≤ 1}, the first time after tn that they are adjacent.

For tn ≤ t < τ1, run the chains (Xt) and (X̃t) independently. If we assume Stn ≥ S̃tn
without loss of generality, then St ≥ S̃t for t ≤ τ1. Hence, for tn ≤ t < τ1, the process

(St − S̃t) is non-negative, and also has non-positive drift (i.e. it is a supermartingale),

by Lemma 7.5 (ii). Moreover, from (7.10), the increments of (St − S̃t) are non-zero with

probability uniformly bounded away from zero (i.e. its variance is uniformly bounded

from zero). Therefore, we can use Lemma 7.6 to deduce that for some constant c2 > 0,

Pσ,σ̃
(
τ1 > tn + αn | Xtn , X̃tn

)
≤ c2n|Stn − S̃tn |√

αn
.

Taking expectation and using (7.17) implies that

Pσ,σ̃ (τ1 > tn + αn) = O(α−1/2). (7.18)

If τmag = τ1, then we are done. Otherwise, Xτ1 has one more plus spin than X̃τ1 . Then

every vertex of Xτ1 , except for one, can be paired with a vertex of X̃τ1 with the same

spin. The monotone coupling can then be used to update the paired vertices together.

Since this corresponds to the case where the two starting configurations differ at only one

vertex, the contraction property (7.5) holds (with a rescaled β), and so after iterating,

Pσ,σ̃
(
τmag > τ1 + αn | Xτ1 , X̃τ1

)
= Pσ,σ̃

(
dist(Xτ1+αn, X̃τ1+αn) ≥ 1 | Xτ1 , X̃τ1

)
≤ Eσ,σ̃

[
dist(Xτ1+αn, X̃τ1+αn) | Xτ1 , X̃τ1

]
≤
(

1− (n− 1) tanh(β/n)

n

)αn
≤ e−(1−β)α.

(7.19)

Here, Markov’s inequality and tanh(x) ≤ x for x ≥ 0 are used in the first and last

inequalities. Note that e−(1−β)α = O(α−1/2). To summarise,

Pσ,σ̃ (τmag > tn + αn) ≤ Pσ,σ̃ (τ1 > tn + (α/2)n)

+ Pσ,σ̃ (τmag > τ1 + (α/2)n | τ1 ≤ tn + (α/2)n) .

Thus, (7.18) and (7.19) imply that Pσ,σ̃ (τmag > tn + αn) = O(α−1/2).
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Stage 3: Two-coordinate chain phase.

In this final stage, we will boost mixing of the magnetisation chain to the full mixing

of the Glauber dynamics. After the burn-in stage, we can assume that the starting

configuration comes from the “nice” set Ω0 = {σ ∈ Ω : |S(σ)| ≤ 1
2}. For the rest of this

stage, fix σ0 ∈ Ω0, and denote its number of positive and negative spins by, respectively,

u0 := |{i : σ0(i) = +1}|, v0 := |{i : σ0(i) = −1}|. (7.20)

For any configuration σ, we also want to consider its positive and negative spins separately.

However, we will do so relative to the fixed σ0. First, partition the vertices as follows:

A(σ) := {i : σ(i) = +1, σ0(i) = +1}, B(σ) := {i : σ(i) = −1, σ0(i) = +1}

C(σ) := {i : σ(i) = +1, σ0(i) = −1}, D(σ) := {i : σ(i) = −1, σ0(i) = −1}.
(7.21)

Then define the following functions:

U(σ) := |A(σ)|, V (σ) := |D(σ)|. (7.22)

Let (Xt)t∈N be a copy of the Glauber dynamics. Then we can consider the process

(Ut, Vt)t∈N, where Ut := U(Xt) and Vt := V (Xt). We call this the two-coordinate chain

(see Figure 7.2.2), which is also a projection of the Glauber dynamics. This is a Markov

chain on Λ = {0, 1, . . . , u0} × {0, 1, . . . , v0}, which has stationary distribution π2, and

transition probabilities that depend on the choice of σ0.

u0 v0

i 1 2 . . . . . . . . . . . . n

σ0 + + + + + + − − − − − −
Xt + + + + − − + + − − − −

A(Xt) B(Xt) C(Xt) D(Xt)

X̃t − − − + + + − − − + + +

B(X̃t) A(X̃t) D(X̃t) C(X̃t)

Figure 7.2.2: Given the Glauber dynamics (Xt)t∈N, the vertices are partitioned into four
sets as defined in (7.21), with |A(Xt)| = Ut, |B(Xt)| = u0 − Ut, |C(Xt)| = v0 − Vt, and
|D(Xt)| = Vt. This schematic represents the two-coordinate chains (Ut, Vt) and (Ũt, Ṽt)
associated with the coupling (Xt, X̃t)t∈N of the Glauber dynamics.

Observe that (Ut, Vt) determines the magnetisation by St = 2(Ut−Vt)
n − u0−v0

n . Define

Λ0 :=

{
(u, v) ∈ Λ :

n

4
≤ u, v ≤ 3n

4

}
. (7.23)

This connects the set of “nice” configurations to the two-coordinate chain. By using the

identities |S(σ0)| = |u0−v0| and u0 +v0 = n, we have σ0 ∈ Ω0 if and only if (u0, v0) ∈ Λ0.
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By the following lemma, it will be sufficient to upper bound the distance to stationarity

of the two-coordinate chain of the Glauber dynamics.

Lemma 7.9 ([37, Lemma 3.4]). Let (Xt)t∈N be the Glauber dynamics started from σ0,

and (Ut, Vt)t∈N its corresponding two-coordinate chain started from (u0, v0). Then

‖Pσ0(Xt ∈ ·)− µn‖TV =
∥∥P(u0,v0)((Ut, Vt) ∈ ·)− π2

∥∥
TV

. (7.24)

Proof. Let Ω(u, v) := {σ ∈ Ω : (U(σ), V (σ)) = (u, v)}. Suppose that we condition

on Ω(u, v). Since specifying U(σ) and V (σ) fixes the number of positive and negative

spins, each arrangement under the Gibbs distribution µn is equally likely by symme-

try. This is also true for the Glauber dynamics, since any path of t steps to get to

a configuration in Ω(u, v) can be permuted. Hence, both the conditional distributions

Pσ0 (Xt ∈ · | (Ut, Vt) = (u, v)) and µn(· | Ω(u, v)) are uniform over Ω(u, v). Therefore,

|Pσ0 (Xt = τ)− µn(τ)| =

∣∣∣∣∣∣
∑

(u,v)∈Λ

1{τ∈Ω(u,v)}

|Ω(u, v)|
[
Pσ0 ((Ut, Vt) = (u, v))− µn(Ω(u, v))

]∣∣∣∣∣∣
(7.25)

By using the triangle inequality, summing over all τ ∈ Ω (recall the definition of the total

variation distance (2.27)), and then interchanging the order of summation, we have

‖Pσ0 (Xt ∈ ·)− µn‖TV ≤
∥∥P(u0,v0) ((Ut, Vt) ∈ ·)− π2

∥∥
TV

.

The reverse inequality follows since (Ut, Vt) is a projection of Xt (see [38, Lemma 7.9]).

Recall that d(t) ≤ d(t) from Lemma 2.23. By taking the maximum over a smaller set

in the last step of the proof of the inequality, we have the analogous bound

max
(u0,v0)∈Λ0

∥∥P(u0,v0)((Ut, Vt) ∈ ·)− π2

∥∥
TV

≤ max
(u0,v0)∈Λ0
(ũ,ṽ)∈Λ

∥∥∥P(u0,v0)((Ut, Vt) ∈ ·)− P(ũ0,ṽ0)((Ũt, Ṽt) ∈ ·)
∥∥∥

TV
. (7.26)

Given a coupling of two-coordinate chains, let τ2 := min{t ∈ N : (Ut, Vt) = (Ũt, Ṽt)} be

the first time that they coalesce. By the coupling theorem (Theorem 3.3),∥∥∥P(u0,v0)((Ut, Vt) ∈ ·)− P(ũ0,ṽ0)((Ũt, Ṽt) ∈ ·)
∥∥∥

TV
≤ P(u0,v0),(ũ,ṽ) (τ2 > t) . (7.27)

Therefore, we want to construct a “good” coupling of a pair of two-coordinate chains

(Ut, Vt) and (Ũt, Ṽt), with one starting at a “nice” configuration σ0 ∈ Ω0 and the other at

an arbitrary σ̃ ∈ Ω. After the magnetisation phase, we can assume that the magnetisations

of the two chains are the same. Thus, if Ut = Ũt, then this forces Vt = Ṽt. Hence, it

suffices to show that Ut − Ũt hits zero to prove that the two chains have coalesced. The

following lemma describes such a coupling.
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Lemma 7.10. Let σ and σ̃ be two configurations with S(σ) = S(σ̃). Define

Ξ :=
{
σ ∈ Ω : min{U(σ), u0 − U(σ), V (σ), v0 − V (σ)} ≥ n

16

}
, (7.28)

the set of configurations where the vertices in the sets from (7.21) are “balanced”. Then

there exists a coupling (Xt, X̃t)t∈N of the Glauber dynamics starting at σ and σ̃ such that:

(i) St = S̃t for all t ∈ N.

(ii) If Rt := Ut − Ũt and R0 ≥ 0, then Rt ≥ 0 for all t ∈ N, and

Eσ,σ̃
[
Rt+1 −Rt | Xt, X̃t

]
≤ 0. (7.29)

(iii) On the event {Xt ∈ Ξ, X̃t ∈ Ξ}, there exists c > 0, independent of n, such that

Pσ,σ̃
(
Rt+1 −Rt 6= 0 | Xt, X̃t

)
≥ c. (7.30)

Proof. Assume that U0 ≥ Ũ0 without loss of generality. The usual Glauber dynamics is

used to update Xt. A vertex i is selected uniformly at random, and the spin of Xt(i) is

updated to +1 with probability p+(St − Xt(i)/n), and −1 otherwise. To update X̃t, a

vertex ĩ is selected uniformly at random from the set of vertices {i : X̃t(i) = Xt(i)}. The

spin of X̃t(̃i) is then updated with the same spin that was selected for Xt(i), which is

possible since both chains start with the same magnetisation.

i ĩ Spin selected Rt+1 −Rt
i ∈ A(Xt) ĩ ∈ C(X̃t) −1 −1

i ∈ D(Xt) ĩ ∈ B(X̃t) +1 −1

i ∈ B(Xt) ĩ ∈ D(X̃t) +1 +1

i ∈ C(Xt) ĩ ∈ A(X̃t) −1 +1

all other combinations 0

Figure 7.2.3: The combination of the vertices i, ĩ, and the spin selected to update Xt(i)
determines the increment Rt+1 −Rt.

This defines a coupling such that St = S̃t. Recall the partitioning of the vertices

by Xt and X̃t from Figure 7.2.2. The process Rt increases or decreases by at most one

depending on the combination of the vertices and spin selected, according to the table in

Figure 7.2.3, and hence Rt ≥ 0. Since St = S̃t, it follows that Rt = Ut − Ũt = Vt − Ṽt.
Recalling that |A(Xt)| = Ut, |B(Xt)| = u0−Ut, |C(Xt)| = v0−Vt, and |D(Xt)| = Vt (and

analogously for X̃t), we have

Pσ,σ̃
(
Rt+1 −Rt = −1 | Xt, X̃t

)
=

(
Ut
n

)(
v0 − Vt +Rt
v0 − Vt + Ut

)
p−(St − n−1)

+

(
Vt
n

)(
u0 − Ut +Rt
u0 − Ut + Vt

)
p+(St − n−1),

(7.31)
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Pσ,σ̃
(
Rt+1 −Rt = +1 | Xt, X̃t

)
=

(
u0 − Ut

n

)(
Vt −Rt

u0 − Ut + Vt

)
p+(St − n−1)(

v0 − Vt
n

)(
Ut −Rt

v0 − Vt + Ut

)
p−(St − n−1).

(7.32)

Therefore, the process Rt has non-positive drift (and so it is a supermartingale):

Eσ,σ̃
[
Rt+1 −Rt | Xt, X̃t

]
=
−Rt
n

[p+(St + n−1) + p−(St − n−1)] ≤ 0.

Recall that n
4 ≤ u0, v0 ≤ 3n

4 from (7.23), and that the functions p+ and p− are uniformly

bounded away from zero from (7.10). On the event {Xt ∈ Ξ, X̃t ∈ Ξ}, the vertices in the

sets A(Xt), B(Xt), C(Xt), andD(Xt) (and analogously for X̃t) are “balanced”. Therefore,

using (7.31) and (7.32) again implies that there exists a constant c > 0, independent of

n, such that Pσ,σ̃
(
Rt+1 −Rt 6= 0 | Xt, X̃t

)
≥ c.

To prove the upper bound of cutoff, it remains to control the probabilities of reaching

or remaining in the various “nice” sets. Recall that tn = n logn
2(1−β) . For convenience, write

tn(α) = tn + αn. Fix (u0, v0) ∈ Λ0, and arbitrary (ũ, ṽ) ∈ Λ. Let σ0 be any configuration

with (U(σ0), V (σ0)) = (u0, v0), and σ̃ be any configuration with (U(σ̃), V (σ̃)) = (ũ, ṽ).

Recalling the definition of Ξ from (7.28), define

H1(t) := {τmag ≤ t}, and H2(t1, t2) :=

t2⋂
t=t1

{Xt ∈ Ξ, X̃t ∈ Ξ}. (7.33)

After the magnetisation phase, Pσ0,σ̃ (H1(tn(α))c) = O(α−1/2) from Lemma 7.8. Consider

the set A0 = {i : σ0(i) = +1}, noting that |A0| = u0. Recall that Mt(A0) = 1
2

∑
i∈A0

Xt(i)

(and similarly for M̃t(A0)). Assume that Utn(α) ≥ Ũtn(α) (if not, simply reverse the roles

of Xt and X̃t in the following analysis).

First, we show that at tn(α), the expected value of |Rt| = |Ut−Ũt| is of order
√
n. Note

that 2Mt(A0) = Ut − (u0 − Ut), and so Ut = Mt(A0) + u0
2 . Similarly, Ũt = M̃t(A0) + u0

2 .

Therefore, |Ut − Ũt| = |Mt(A0) − M̃t(A0)| ≤ |Mt(A0)| + |M̃t(A0)|. Taking expectations

and using Lemma 7.5 (iv) (c) shows that

Eσ0,σ̃

[
|Utn(α) − Ũtn(α)|

]
≤ Eσ0

[
|Mtn(α)(A0)|

]
+ Eσ̃

[
|M̃tn(α)(A0)|

]
= O(

√
n). (7.34)

After tn, we claim that in the next αn steps, (Xt) and (X̃t) concentrate on Ξ. Let

Y :=
∑

tn(α)≤t≤tn(2α)

1{|Mt(A0)|>n/64}. (7.35)

By Lemma 7.5 (iv) (b) and Markov’s inequality, Pσ0,σ̃ (|Mt(A0)| > n/64) = O(n−1). Thus,

Eσ0,σ̃ [Y ] = O(1). Since the increments of Mt(A0) are in {−1, 0,+1}, it follows that if
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|Mt0(A0)| ≥ n/32 for some t0, then |Mt(A0)| > n/64 for all t in any interval of length

n/64 containing t0. Hence,

Pσ0,σ̃

 tn(2α)⋃
t=tn(α)

{
|Mt(A0)| ≥ n/32

} ≤ Pσ0,σ̃ (Y > n/64) ≤
64Eσ0,σ̃ [Y ]

n
= O(n−1).

(7.36)

Recall that n/4 ≤ u0 ≤ 3n/4. If either Ut0 ≤ n/16, or u0 − Ut0 ≤ n/16, for some t0, then

|2Mt0(A0)| = |Ut0 − (u0 − Ut0)| ≥ n/8. (Similar results also hold by considering Vt, Ũt,

and Ṽt instead.) Thus,

Pσ0,σ̃ (H2(tn(α), tn(2α))c) ≤ Pσ0,σ̃

 tn(2α)⋃
t=tn(α)

{
|Mt(A0)| ≥ n/32

} = O(n−1). (7.37)

Given that the events H1(tn(α)) and H2(tn(α), tn(2α)) hold (writing H1 and H2 below

for simplicity), the assumptions of Lemma 7.10 are met. Therefore, the two-coordinate

chains of (Xt) and (X̃t) can be coupled during tn(α) ≤ t ≤ tn(2α), such that the process

Rt = Ut − Ũt is a supermartingale with variance uniformly bounded away from zero.

Hence, by Lemma 7.6, there exists a constant c1 > 0 such that

Pσ0,σ̃

(
{τ2 > tn(2α)} ∩H1 ∩H2 | Xtn(α), X̃tn(α)

)
≤
c1|Rtn(α)|√

nα
. (7.38)

By taking expectations and using (7.34), we deduce that for some constant c∗ > 0,

Pσ0,σ̃ ({τ2 > tn(2α)} ∩H1 ∩H2) ≤ c∗√
α

. Hence, together with (7.37), the coupling time of

the two-coordinate chains is upper bounded by

Pσ0,σ̃ (τ2 > tn(2α)) ≤ Pσ0,σ̃ ({τ2 > tn(2α)} ∩H1 ∩H2)

+ Pσ0,σ̃ (Hc
2) + Pσ0,σ̃ (Hc

1) ≤ c∗√
α

+O(n−1). (7.39)

To summarise, combining Lemma 7.7, Lemma 7.9, (7.26), and (7.27) yields

dn(tn + (θ0 + 2α)n) ≤ Pσ0,σ̃ (τ2 > tn + 2αn) ≤ c∗√
α

+O(n−1). (7.40)

Therefore, limα→∞ lim supn→∞ dn(tn + αn) = 0, as desired.

Proof of Theorem 7.4 – lower bound of cutoff

To obtain a lower bound for the distance to stationarity of the Glauber dynamics (Xt)t∈N,

it will be sufficient to lower bound the distance to stationarity of its projection, the

magnetisation chain (St)t∈N (see [38, Lemma 7.9]).

Choose an initial state s0 ∈ ΩM satisfying 0 < s0 <
1−β

3 . Let t∗n(α) := tn − αn
1−β , and

η := 1− 1−β
n . The main idea is to use the Taylor expansion tanh(x) = x− x3

3 + 2x5

15 −O(x7)
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to control the drift of the magnetisation chain from (7.11). By expanding tanh(β(s+n−1))

about βs in fn(s), and using θn(s) = O(n−2), the key inequality is that, for St > 0,

Es0 [|St+1| | St] ≥ η |St| −
|St|3

2n
−O(n−2).

(This holds trivially for St = 0, and, by symmetry, also for St < 0.) Using the bounds

on the first and second moments of St from Lemma 7.5, it can be shown (see [37, (3.24)–

(3.27)] for the details) that, for sufficiently large n,

Es0
[
|St∗n(α)|

]
≥ s0 η

t∗n(α)

2
≥ B, where B :=

s0e
α

2n1/2
. (7.41)

Suppose that Sπn is the normalised magnetisation under the stationary distribution πn.

By symmetry, E [Sπn ] = 0. Using the stationary condition πn = πnP
t
M , and interchanging

the order of summation, we see that

Var(Sπn) =
∑
s∈ΩM

πn(s) s2 =
∑
z∈ΩM

(
πn(z)

∑
s∈ΩM

P tM (z, s) s2
)

=
∑
z∈ΩM

πn(z)Ez
[
S2
t

]
.

Hence, by Lemma 7.5 (iii) and (iv) (a), max{Vars0(St),Var(Sπn)} ≤ c
n for some constant

c > 0. Therefore, by using (7.41) with Chebyshev’s inequality (Theorem 1.2), as well as

the bound Vars0(|St|) ≤ Vars0(St), we have

Ps0
(
|St∗n(α)| ≤

B

2

)
≤ Ps0

(∣∣ |St∗n(α)| − Es0
[
|St∗n(α)|

] ∣∣ ≥ B

2

)
≤

Vars0(|St∗n(α)|)
B2/4

≤ 16ce−2α

s2
0

,

P
(
|Sπn | ≥

B

2

)
≤ Var(|Sπn |)

B2/4
≤ 16ce−2α

s2
0

.

(7.42)

Define the set A :=
[−B

2 , B2
]
. The inequalities (7.42) show that the distribution of the

magnetisation chain at t∗n(α) = αn
1−β is well separated from πn, with

∥∥Ps0 (St∗n(α) ∈ ·
)
− πn

∥∥
TV
≥ πn(A)− Ps0

(
|St∗n(α)| ∈ A

)
≥ 1− 32ce−2α

s2
0

.

The final term in the inequality above also provides a lower bound for dn (t∗n(α)). Hence,

limα→∞ lim infn→∞ dn(tn − αn) = 1, as desired.

Remark 7.11. Ding et al. [18, Proposition 3.9] show that the spectral gap of the Glauber

dynamics (Xt)t∈N is the same as the spectral gap of its magnetisation chain (St)t∈N. In

the high temperature regime β < 1, they find that the spectral gap γ
(n)
∗ = (1 + o(1))1−β

n

([18, Theorem 1]). Since we showed that t
(n)
mix = O(n log n) in Theorem 7.2, the product

condition t
(n)
mix · γ

(n)
∗ → ∞ as n → ∞ is satisfied, which is necessary for cutoff from

Theorem 6.13. Indeed, there is actually a cutoff, which we have just proved.
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7.3 Mixing at the critical temperature

The main result of this section is the following theorem, which establishes the order of the

mixing time at the critical temperature β = 1. This was also proved by Levin et al. [37].

Again, we have chosen to omit some of the technical details from the paper for brevity.

Theorem 7.12. If β = 1, then the Glauber dynamics for the Ising model on Kn has a

mixing time of order n3/2. That is, for some constants c1, c2 > 0, independent of n,

c1n
3/2 ≤ t(n)

mix ≤ c2n
3/2.

Proof of Theorem 7.12 – upper bound

The strategy will be to show that two Glauber dynamics can be coupled such that their

magnetisations agree in order n3/2 steps. After that, we will show that they will coalesce

with high probability in an additional order n log n steps.

Let (Xt)t∈N be the Glauber dynamics started at σ, with magnetisation chain (St)t∈N.

Let τ0 := min{t ∈ N : |St| ≤ 1/n} be the first time that |St| “hits zero” (accounting for

the case of n odd). We claim that τ0 is reached with high probability in order n3/2 steps.

When β = 1, the Taylor expansion of tanh(x) shows that E [St+1] = St− S3
t

3n +O(n−2)

(see (7.11)). Let α be a constant satisfying 2/3 < α ≤ 1. By analysing the moments

of the magnetisation chain in order to control the drift of |St|, it can be shown (see [37,

(4.2)]) that there exists a constant c1 = c1(α) > 0 such that

Eσ
[
|Sc1n3−2α | · 1{τ0>c1n3−2α}

]
≤ nα−1. (7.43)

Recall that if |St| > 1
n , then |St| has non-positive drift from (7.12). Moreover, its

holding probability is uniformly bounded away from zero by (7.10). Therefore, using

Lemma 7.6 with the stopping time τ0 implies that for some constant c2 > 0,

Pσ
(
τ0 > c1n

3−2α + γn2α | Xc1n3−2α

)
≤
c2n|Sc1n3−2α |
√
γnα

. (7.44)

Choose α = 3/4, so that 3− 2α = 2α. Multiplying both sides of (7.44) by 1{τ0>c1n3−2α},

taking expectations, and then using (7.43) shows that

Pσ
(
τ0 > (c1 + γ)n3/2

)
= O(γ−1/2). (7.45)

This bound on τ0 will be used with the following lemma, based off [18, Lemma 3.1].

Lemma 7.13. Let (St)t∈N and (S̃t)t∈N be two magnetisation chains that are started from

arbitrary states s and s̃ respectively. Recall that τmag = min{t ∈ N : St = S̃t}, and

τ0 = min{t ∈ N : |St| ≤ 1/n}. Suppose that Pσ (τ0 ≥ T ) < ε for some T > 0 and

0 < ε < 1. Then there exists a constant cε > 0, and a coupling (St, S̃t)t∈N, such that

Ps,s̃ (τmag ≤ cεT ) ≥ 1− ε.
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Proof. Assume that |S̃0| < |S0| without loss of generality. Define G1 := {τ0 < T}, which

occurs with probability at least 1 − ε, by assumption. Denote the first time that |St| is

adjacent to |S̃t| by τabs := min{t ∈ N : |St| ≤ |S̃t| + 2
n}. By definition, τabs < τ0. Let St

and S̃t run independently until τabs + 1.

If St and S̃t are within one step of each other (i.e. |St − S̃t| ≤ 2
n), then they will

coalesce in the next step with probability bounded away from zero. This is clear if

St = S̃t. Otherwise, if the two chains are adjacent, then they will coalesce if the chain

on the “outside” (i.e. further away from zero) moves in, and the chain on the “inside”

remains still. From (7.10), both these probabilities are uniformly bounded away from 0

and 1. Hence, there exists a constant 0 < b < 1 such that

Ps,s̃
(
St+1 = S̃t+1 | |St − S̃t| ≤

2

n

)
> b. (7.46)

(For example, b = 1
8 [1 − tanh(β)] will suffice for sufficiently large n.) Define the event

G2 := {|Sτabs+1| = |S̃τabs+1|}. Due to the symmetry of (St)t∈N and (−St)t∈N, G2 occurs

with probability at least b by (7.46).

Suppose that G2 holds. Then we claim that St and S̃t will coalesce at some time

t ≤ τ0 + 1 with probability at least b. This is clear if Sτabs+1 = S̃τabs+1. Otherwise, if

Sτabs+1 = −S̃τabs+1, then by the reflective symmetry of the magnetisation chain again, St

and S̃t can be coupled such that St = −S̃t (i.e. reflection coupling). Hence, at time τ0,

|Sτ0 − S̃τ0 | = 2|Sτ0 | ≤ 2
n . (If n is even, Sτ0 = S̃τ0 already.)

Define the event G3 := {Sτ0+1 = S̃τ0+1}. By (7.46), Sτ0 and S̃τ0 will coalesce in the

next step at time τ0 + 1 with probability at least b. Since G2 and G3 are independent of

G1, Ps,s̃ (G1 ∩G2 ∩G3) = Ps,s̃ (G1)Ps,σ̃ (G2)Ps,s̃ (G3 | G2) ≥ b2(1− ε). Hence,

Ps,s̃ (τmag ≤ T ) ≥ Ps,s̃ (G1 ∩G2 ∩G3) ≥ b2(1− ε). (7.47)

Finally, to extend the result, the above process can be repeated in blocks of T time

units until coalescence. If the process is repeated once, then

Ps,s̃ (τmag > 2T ) = Ps,s̃
(
τmag > 2T | St 6= S̃T

)
Ps,s̃ (τ > T ) ≤ (1− b2(1− ε))2.

By induction, if we repeat the process ` ∈ Z+ times, Ps,s̃ (τmag > `T ) ≤ (1 − b2(1 − ε))`.
Hence Ps,s̃ (τmag ≤ `T ) ≥ 1− (1− b2(1− ε))`. Since 1− b2(1− ε) < 1, it follows that we

can choose a sufficiently large cε such that Ps,s̃ (τmag > cεT ) ≥ 1− ε, as desired.

Hence, combining (7.45) and Lemma 7.13 implies that Pσ,σ̃
(
τmag > c∗n

3/2
)
< 1/8 for

some constant c∗ > 0.

For a coupling (Xt, X̃t)t∈N of two copies of the Glauber dynamics, denote their coupling

time by τcouple := min{t ∈ N : Xt = X̃t}. To conclude, the next lemma shows that after

the magnetisations of Xt and X̃t match, they will coalesce with high probability after an

additional order n log n steps.
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Lemma 7.14 ([37, Lemma 2.9]). Let σ, σ̃ ∈ Ω be configurations such that S(σ) = S(σ̃).

Then there exists a coupling (Xt, X̃t)t∈N of the Glauber dynamics started at σ and σ̃

respectively, such that for some constant c0 = c0(β) > 0, independent of n,

Pσ,σ̃ (τcouple > c0n log n) ≤ 1

n
. (7.48)

Proof. The Glauber dynamics is used to update Xt. A vertex i is selected uniformly at

random, and the spin of Xt(i) is updated to +1 with probability p+(St −Xt(i)/n), and

−1 otherwise. If X̃t(i) = Xt(i), then the same update can be performed for X̃t.

Otherwise, if X̃t(i) 6= Xt(i), a vertex ĩ is selected uniformly at random from the set of

vertices {j : X̃t(j) = Xt(i), X̃t(j) 6= Xt(j)}. Then X̃t(̃i) is updated with the same spin

as was selected for Xt(i). This is possible since S(σ) = S(σ̃), and the coupling maintains

St = S̃t.

Let Dt = dist(Xt, X̃t) count the different vertices between Xt and X̃t. This can only

decrease under the chosen coupling. If Xt(i) 6= X̃t(i) and the spin of Xt(i) is flipped, then

Dt+1 −Dt = −2. This occurs with probability at least min{p+, p−}, which is uniformly

bounded away from zero by some constant b > 0, by (7.10). Otherwise, Dt+1 −Dt = 0.

Hence, Eσ,σ̃ [Dt+1 −Dt] ≤ −2bDt
n . It follows that Yt = Dt (1−2b/n)−t is a non-negative

supermartingale (i.e. Eσ,σ̃ [Yt+1 | Xt] ≤ Yt). Therefore,

Eσ,σ̃ [Dt] ≤ Eσ,σ̃ [D0]

(
1− 2b

n

)t
≤ ne−2bt/n. (7.49)

Let t = c0n log n, where c0 = c0(β) > 0 is a sufficiently large constant such that the upper

bound in (7.49) is less than 1
n . Then by Markov’s inequality (Theorem 1.1),

Pσ,σ̃ (τcouple > c0n log n) = Pσ,σ̃ (Dc0n logn ≥ 1) ≤ Eσ,σ̃ [Dc0n logn] ≤ 1

n
,

as desired.

Let H1(t) = {τmag ≤ t}. On the event H1(c∗n
3/2) (writing H1 for simplicity), by

Lemma 7.14, there exists a constant c0 such that

Pσ,σ̃
(
{τcouple > c∗n

3/2 + c0n log n} ∩H1 | Xc∗n3/2 , X̃c∗n3/2

)
≤ 1

n
.

Taking expectations shows that Pσ,σ̃
(
{τcouple > c∗n

3/2 + c0n log n} ∩H1

)
≤ 1/n.

To summarise the proof, we have, by the coupling theorem (Theorem 3.3),

dn(c∗n
3/2 + c0n log n) ≤ Pσ,σ̃

(
τcouple > c∗n

3/2 + c0n log n
)

≤ Pσ,σ̃ (Hc
1) + Pσ,σ̃

(
{τcouple > c∗n

3/2 + c0n log n} ∩H1

)
≤ 1

8
+

1

n
.

78



For sufficiently large n, the final expression is less than 1
4 . Therefore, this shows that

tmix ≤ c∗n3/2 + c0n log n = O(n3/2), as desired.

Proof of Theorem 7.12 – lower bound

As in the high temperature regime, it will suffice to lower bound the distance to station-

arity of the magnetisation chain, which is a projection of the Glauber dynamics. Recall

that Sπn denotes the normalised magnetisation under the stationary distribution πn.

For β = 1, the following shows that n1/4Sπn converges to a limiting distribution.

Proposition 7.15 ([18, Theorem 5.1]). As n→∞,

n1/4Sπn → Z exp

(
− s

4

12

)
, s ∈ R, (7.50)

where the convergence is in distribution, and Z is a normalising constant.

Thus, by Proposition 7.15, we can choose a constant A > 0 such that

P
(
|Sπn | ≤ An−1/4

)
≥ 3

4
. (7.51)

Let s0 := 2An−1/4. We claim that the distribution of (St)t∈N starting from s0 remains

well separated from πn after order n3/2 steps. The strategy is to construct a modified

version of the magnetisation chain, also starting at s0, that stochastically dominates St.

By using the Taylor expansion of tanh(x) for the moments of the magnetisation chain

again, the drift of this modified chain towards An−1/4 can be bounded from above (see

[37, (4.6)–(4.12)] for the full details). Thus, it can be shown that there exists a constant

cA > 0 such that

Ps0
(
ScAn3/2 ≤ An−1/4

)
≤ 1

4
. (7.52)

Define the set B := [−An−1/4, An−1/4]. By combining (7.51) and (7.52), we deduce that

‖πn − Ps0 (St ∈ ·)‖TV ≥ πn(B)− Ps0 (St ∈ B) ≥ 1

2
.

Since the last term in the inequality above also provides a lower bound for dn(cAn
3/2), it

follows that tmix ≥ cAn3/2, as desired.

Remark 7.16. At the critical temperature β = 1, Ding et al. [18, Theorem 2] show

that the spectral gap γ
(n)
∗ of the Glauber dynamics (Xt)t∈N is of order n3/2. Recall from

Theorem 7.12 that c1n
3/2 ≤ t

(n)
mix ≤ c2n

3/2 for some c1, c2 > 0. Hence, t
(n)
mix · γ

(n)
∗ = O(1),

which does not tend to infinity, and so there is no cutoff by Theorem 6.13. Therefore, we

conclude that the transition to stationarity occurs gradually at around order n3/2 steps.
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7.4 Exponentially slow mixing at low temperatures

The main result of this final section will be the following theorem, which shows that there

is exponentially slow mixing when β > 1. The conductance technique from Section 4.2

will be used by explicitly identifying a particularly “bad” set that inhibits mixing.

Theorem 7.17. Suppose that β > 1 for the Glauber dynamics for the Ising model on

Kn. Then there exists real constants b > 0 and r(β) > 0 such that t
(n)
mix ≥ benr(β).

Proof. This closely follows [38, Theorem 15.4] with additional details. Denote the set of

configurations with exactly k plus spins by Ak := {σ ∈ Ω : S(σ) = 2k
n − 1}. By the

symmetry of Kn, counting edges shows that π(Ak) = ak/Z(β), where

ak =

(
n

k

)
exp

(
β

n

[(
k

2

)
+

(
n− k

2

)
− k(n− k)

])
. (7.53)

By taking logarithms and using Stirling’s formula log n! = n log n−n+ 1
2 log(2πn) + o(1),

it can be verified that log(ak) = nψβ(c)[1 + o(1)], where c = k
n , and

ψβ(c) = −c log(c)− (1− c) log(1− c) + β

[
(1− 2c)2

2

]
, 0 ≤ c ≤ 1. (7.54)

Here the term x log(x) is taken to be 0 if x = 0. (Note that the first two terms of ψβ is the

binary entropy function.) Since ψβ is continuous, and |c− c̃| = o(n−1) (where c̃ = bcnc
n ),

it follows that the error n|ψβ(c)− ψβ(c̃)| is also o(n). Hence,

log(abcnc) = nψβ(c)[1 + o(1)], 0 ≤ c ≤ 1. (7.55)

Next, standard calculus on (7.54) shows that ψ
′
β(1/2) = 0 and ψ

′′
β(1/2) = −4(1 − β).

Since β > 1, c = 1
2 is a local minimum. Since ψβ(0) = β

2 and ψβ is continuous, by the

Extreme Value Theorem, there exists a real c∗ < 1/2 that maximises ψβ over [0, 1/2].

We claim that B := {σ : S(σ) < 0} is a set that has poor conductance. By symme-

try, B has the same stationary probability as the set of all configurations with positive

normalised magnetisation, and so π(B) ≤ 1
2 . Since c∗ < 1/2, bc∗nc must be an integer

between 0 and bn/2c. Therefore, π(B) =
∑bn/2c

k=0 π(Ak) ≥ π(Abc∗nc).

If n is odd, then B =
⋃bn/2c
k=0 Ak. Since only one spin is changed at a time, the only

way from B to Bc is to start in Abn/2c. Thus, recalling the definition of the edge measure

from (4.8), Q(B,Bc) =
∑

σ∈Abn/2c π(σ)P (σ,Bc) ≤ π(Abn/2c). If n is even, then we can

use the symmetry of the edge measure, Q(B,Bc) = Q(Bc, B), from Lemma 4.10 (ii) to

reach the same conclusion.

Recalling that π(Ak) = ak/Z(β), putting (7.55) into these bounds for π(B) and

Q(B,Bc) shows that the conductance, defined in (4.9), is upper bounded by

Φ∗ ≤ Φ(B) =
Q(B,Bc)

π(B)
≤

exp
(
nψβ(1/2)[1 + o(1)]

)
exp

(
nψβ(c∗)[1 + o(1)]

) . (7.56)
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Since c∗ maximises ψβ on [0, 1/2], ψβ(c∗) − ψβ(1/2) > 0. Let ε =
ψβ(c∗)−ψβ(1/2)

2(ψβ(c∗)+ψβ(1/2)) > 0.

Thus, for sufficiently large n, (7.56) implies that the conductance is upper bounded by

exp
(
− n

[(
ψβ(c∗)− ψβ(1/2)

)
− ε
(
ψβ(c∗) + ψβ(1/2)

)])
= exp

(
−n
[
ψβ(c∗)− ψβ(1/2)

2

])
.

Therefore, we can define r(β) := 1
2

(
ψβ(c∗) − ψβ(c)

)
> 0. We have shown that for suffi-

ciently large n, Φ∗ ≤ e−nr(β). Furthermore, we can choose b > 0 such that Φ∗ ≤ be−nr(β)

for all n. By Theorem 4.12, we conclude that t
(n)
mix ≥ benr(β), as desired.

Remark 7.18. (i) The “restricted dynamics” (which moves between configurations

with positive magnetisation only) is rapidly mixing with tmix � n log n, even in

this low temperature regime ([37, Theorem 3]). Hence, crossing the “magnetisation

bridge” to change the signs (represented by the set B in the proof of Theorem 7.17)

is the severe bottleneck of the Glauber dynamics.

(ii) Ding et al. [18, Theorem 3] show that if β > 1, then the spectral gap γ
(n)
∗ of the

Glauber dynamics (Xt)t∈N satisfies t
(n)
mix · γ

(n)
∗ = O(1). Since the product condition

does not hold, Theorem 6.13 implies that there is no cutoff.
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Chapter 8

Concluding Remarks

In this thesis, we have surveyed some of the main techniques used to study the mixing

times of Markov chains. The development of the probabilistic and analytical tools de-

scribed in Chapters 3 and 4, as well as from other areas, is an interesting research area.

Extending the bounds to more general classes of chains (e.g. non-reversible chains, and

chains with uncountable state spaces) would also be valuable.

We have also described some problems requiring a careful understanding of mixing

times. In Chapter 5, we discussed the key challenge of finding a rapidly mixing Markov

chain in order to present a FPRAS for many “difficult” counting problems, which has led

to the development of new tools. It is still an open question whether rapidly mixing chains

exist for some problems (such as for sampling proper q-colourings of a graph of maximum

degree ∆ with q ≥ ∆ + 1). Furthermore, it is also of practical interest to provide more

useful bounds for rapidly mixing chains (after all, n20 is still polynomial).

A detailed study of the Glauber dynamics for the mean-field Ising model was con-

ducted in Chapter 7, which was found to either mix rapidly or torpidly, depending on the

temperature. At high temperatures, very precise control of the mixing time was required

to prove that it exhibits a cutoff (analogous to a “probabilistic phase transition”). The

many examples of cutoff provided in Chapter 6 suggests that it may be a more general

phenomenon than expected. Proving cutoff for more chains, finding more necessary and

sufficient conditions for cutoff, as well as the development of a general theory of cutoff

(i.e. what makes it cutoff?) are active research problems.

We conclude with the note that essentially none of the applications of the wonderful

MCMC technique (e.g. in statistics, physics, chemistry, biology, etc.) are accompanied

by any practically useful bounds on runtime [14]. Hence, there are numerous problems

of practical and theoretical interest in the study of the mixing times of Markov chains,

which will likely require the refinement of existing tools, as well as new ideas to answer.
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