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Introduction

Machine learning models are often trained using mini-batch gradient
descent with random reshuffling: in each epoch, the dataset is randomly
partitioned into mini-batches and iterated through.

Question: What are the error dynamics and generalization capabil-
ities of the learned model?
Main difficulty: Introduction of dependencies complicates the anal-
ysis, compared to sampling with replacement.

Model. Observe n i.i.d. data samples (xi, yi), where yi = xT
i β∗ + ηi

for some β∗ ∈ Rp and noise ηi (i.e., y = Xβ∗ + η).
Partition data X ∈ Rn×p into B mini-batches X1, . . . , XB ∈ R(n/B)×p.
In each epoch, mini-batches are ordered by a random permutation τ ∈
SB, and B iterations of GD with step size α for the least squares loss
Lb(β) = B

2n‖Xbβ − yb‖2
2 are performed:

β
(b)
k = β

(b−1)
k − Bα

n
XT

τ (b)(Xτ (b)β
(b−1)
k − yτ (b)), b = 1, 2, . . . , B.

Summary. By studying the discrete error dynamics of the mean
iterate after k epochs, β̄k := Eτ∼Unif(SB)

[
β

(B)
k

]
, we find that there

are higher-order step size-dependent effects introduced by sampling
without replacement, which result in subtly different trajectories un-
der the linear scaling rule compared to full-batch gradient descent.

Definition of modified features

Let Wb = B
nXT

bXb be the sample covariance of each mini-batch,
and W = 1

nXTX = 1
n

∑B
b=1 XT

bXb. Define modified mini-batches
X̃b := XbΠb, where Πb := Eτ∼Unif(SB)

[∏
j:j<τ−1(b)(I− αWτ (j))

]
, and

concatenate into X̃ (i.e., feature xi ↔ Πbxi). Define the sample cross-
covariance

Z := 1
n

X̃TX = 1
n

B∑
b=1

ΠbXT
bXb.

This can be shown to be symmetric, and Z ≡ Z(α) = W + O(α). In
general: Z is a non-commutative polynomial of W1, . . . , WB.
Example (two-batch GD). For B = 2, X̃1 = X1

(
I− 1

2αW2
)
, and

Z = 1
2 (W1 + W2)− 1

4α (W2W1 + W1W2).

Training error dynamics

Theorem 1.
β̄k − β∗ = (I−BαZ)k(β0 − β∗) + 1

n

[
I− (I−BαZ)k

]
Z†X̃Tη.

• Comparison with full-batch gradient descent:

βfull
k − β∗ = (I− αW)k(β0 − β∗) + 1

n

[
I− (I− αW)k

]
W†XTη.

Mini-batches sampled with replacement ⇒ same expression for mean
iterate as full-batch GD with k ← Bk (time change).

• Linear scaling rule (i.e., using step size α/B with B batches)⇒ mini-
batch dynamics match full-batch GD up to first order in α (left plot).
However, full-batch can diverge while mini-batch converges (right plot).
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Generalization error dynamics

Assume that E
[
xixT

i

]
= Σ, and ηi has mean zero and variance σ2. We

are interested in the dynamics of the risk
RX(β) := E

[
(xTβ − xTβ∗)2 | X

]
= E

[
‖β − β∗‖2

Σ | X
]

.

Theorem 2. Let PZ,0, PZ be projectors onto Null(Z), Range(Z).
RX(β̄k) = (β0 − β∗)TPZ,0ΣPZ,0(β0 − β∗)
+ (β0 − β∗)TPZ(I−BαZ)kΣ(I−BαZ)kPZ(β0 − β∗)

+ σ2

n
Tr

([
I− (I−BαZ)k

]
Σ
[
I− (I−BαZ)k

]
Z†

(
1
n

X̃TX̃
)

Z†
)

Decomposition into fixed error in “frozen subspace” + bias component
(→ 0) + variance component (→ σ2

n Tr
(

ΣZ†
(

1
nX̃TX̃

)
Z†

)
).

Two-batch case: limiting variance = (1 + O(α))σ2

n Tr
(
ΣZ†

)
, which is

highly reminiscent of σ2

n Tr
(
ΣW†) for full-batch GD.

Asymptotic analysis: p fixed, n→∞

Proposition 3. Suppose p is fixed. Then Z(α/B)→ Σ(I− pB,α(Σ))
as n → ∞, where pB,α is a polynomial. (e.g., pB,2(Σ) = 1

4αΣ, and
pB,3(Σ) = 1

3αΣ− 1
27α

2Σ2).

Observation: if Σ has eigenvalues λi, then the limiting eigenvalues of
Z are λi(1− pB,α(λi)): shrinkage effect on spectrum.

Idea: Features xi i.i.d. with E
[
xixT

i

]
= Σ ⇒Wb → Σ for all b ∈ [B]

a.s. by the law of large numbers. In particular, Πb is independent of b
asymptotically. If we explicitly assume this:
Proposition 4. Let X = USVT be a SVD of X, and W = 1

nXTX
have eigenvalues λ̂i. If Πb ≡ I− pB,α(W) and Σ is isotropic, then

RX(β̄k) =
p∑

i=1
[1− αλ̂i(1− pB,α(λ̂i))]2k[VT(β0 − β∗)]i

+ σ2

n

p∑
i=1

1
λ̂i

(
1− [1− αλ̂i(1− pB,α(λ̂i))]k

)2
.

Upshot: explicit description of how the trajectory differs from full-
batch GD under linear scaling, based on the spectrum of the features
sample covariance (same expression with λ̂i← λ̂i(1− pB,α(λ̂i)))!

Proportional regime: p/n→ γ ∈ (0,∞)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.5

1.0

1.5

2.0

2.5
Spectral distribution ( =0.25, =0.4)

Full-batch (size 4,000, )
MP density
Two-batch (size 2,000, /2)
Two-batch limiting density

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

Spectral distribution ( =1.5, =0.2)
Full-batch (size 1,000, )
MP density
Two-batch (size 500, /2)
Two-batch limiting density

Two-batch, Gaussian X: αZ(α/2) = 1
2α(W1 + W2) − 1

8α
2(W2W1 +

W1W2) is a non-commutative polynomial of Wishart random matrices:
no (simple) analytical characterization of limiting spectral distribution.
Could numerically compute using an algorithm of Belinschi et al. (2017),
based on operator-valued free probability. Figure shows results in (left)
underparameterized γ = 1/4 and (right) overparameterized γ = 3/2
regimes. Shrinkage effect is again apparent.
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