Error dynamics of mini-batch gradient descent with random reshuffling for least squares

¹Princeton University

Jackie Lok¹

²Boston College

Introduction

Question: What are the error dynamics and generalization capabilities of the learned model?

Machine learning models are often trained using mini-batch gradient descent with random reshuffling: in each epoch, the dataset is randomly partitioned into mini-batches and iterated through.

Main difficulty: Introduction of dependencies complicates the analysis, compared to sampling with replacement.

Model. Observe *n* i.i.d. data samples (\mathbf{x}_i, y_i) , where $y_i = \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}_* + \eta_i$ $\mathcal{B}_* \in \mathbb{R}^p$ and noise η_i (i.e., $\mathbf{y} = \mathbf{X}\boldsymbol{\beta}_* + \boldsymbol{\eta}$).

 $\mathsf{Partition\ data\ X} \in \mathbb{R}^{n \times p}$ into B mini-batches $\mathbf{X}_1, \ldots, \mathbf{X}_B \in \mathbb{R}^{(n/B) \times p}.$ In each epoch, mini-batches are ordered by a random permutation *τ* ∈ S_B , and *B* iterations of GD with step size α for the least squares loss $L_b(\boldsymbol{\beta}) = \frac{B}{2n} ||\mathbf{X}_b\boldsymbol{\beta} - \mathbf{y}_b||_2^2$ $\frac{2}{2}$ are performed:

Summary. By studying the discrete error dynamics of the *mean* i terate after k epochs, $\bar{\boldsymbol{\beta}}_k := \mathbb{E}_{\tau \sim \text{Unif}(S_B)}\left[\begin{smallmatrix} 0 & 0 \\ 0 &$ $\boldsymbol{\beta}_k^{(B)}$ *k* i , we find that there are higher-order step size-dependent effects introduced by sampling without replacement, which result in subtly different trajectories under the linear scaling rule compared to full-batch gradient descent.

Let $\mathbf{W}_b = \frac{B}{n}$ $\frac{B}{n}\mathbf{X}_{b}^{\mathsf{T}}\mathbf{X}_{b}$ be the sample covariance of each mini-batch, and \mathbf{W} = $\frac{1}{n}$ $\frac{1}{n}$ **X**^T**X** = $\frac{1}{n}$ *n* $\sum_{b=1}^{B} \mathbf{X}_{b}^{\mathsf{T}} \mathbf{X}_{b}$ Define modified mini-batches $\widetilde{\mathbf{X}}_b := \mathbf{X}_b\Pi_b$, where $\Pi_b := \mathbb{E}_{\tau \sim \text{Unif}(S_B)}\left[\prod_{j:j<\tau^{-1}(b)}(\mathbf{I} - \alpha \mathbf{W}_{\tau(j)})\right]$ $\overline{}$ *,* and concatenate into $\tilde{\mathbf{X}}$ (i.e., feature $\mathbf{x}_i \leftrightarrow \Pi_b\mathbf{x}_i$). Define the sample crosscovariance

$$
\boldsymbol{\beta}_k^{(b)} = \boldsymbol{\beta}_k^{(b-1)} - \frac{B\alpha}{n} \mathbf{X}_{\tau(b)}^\mathsf{T}(\mathbf{X}_{\tau(b)} \boldsymbol{\beta}_k^{(b-1)} - \mathbf{y}_{\tau(b)}), \quad b = 1, 2, \dots, B.
$$

• Linear scaling rule (i.e., using step size α/B with B batches) \Rightarrow minibatch dynamics match full-batch GD up to first order in *α* (left plot).

Definition of modified features

Assume that $\mathbb{E} \left[\mathbf{x}_i \mathbf{x}_i^{\mathsf{T}} \right]$ $\left\{ \Gamma_{i}\right\} =\Sigma$, and η_{i} has mean zero and variance $\sigma^{2}.$ We are interested in the dynamics of the risk

$$
\mathbf{Z} := \frac{1}{n} \widetilde{\mathbf{X}}^{\mathsf{T}} \mathbf{X} = \frac{1}{n} \sum_{b=1}^{B} \Pi_b \mathbf{X}_b^{\mathsf{T}} \mathbf{X}_b.
$$

This can be shown to be symmetric, and $\mathbf{Z} \equiv \mathbf{Z}(\alpha) = \mathbf{W} + O(\alpha)$. In general: \mathbf{Z} is a non-commutative polynomial of $\mathbf{W}_1, \ldots, \mathbf{W}_B$.

Example (two-batch GD). For $B = 2$, $\widetilde{\mathbf{X}}_1 = \mathbf{X}_1 (\mathbf{I} - \frac{1}{2})$ $\frac{1}{2} \alpha \mathbf{W}_2 \big)$, and $\mathbf{Z}=\frac{1}{2}$ $\frac{1}{2}$ $(\mathbf{W}_1 + \mathbf{W}_2) - \frac{1}{4}$ $\frac{1}{4}\alpha$ (**W**₂**W**₁ + **W**₁**W**₂).

Training error dynamics

Idea: Features \mathbf{x}_i i.i.d. with $\mathbb{E} \left[\mathbf{x}_i \mathbf{x}_i^{\mathsf{T}} \right]$ $\left\{ \mathbf{J}_{i}\right\} =\Sigma\Rightarrow\mathbf{W}_{b}\rightarrow\Sigma$ for all $b\in\left[B\right]$ a.s. by the law of large numbers. In particular, Π_b is independent of b asymptotically. If we explicitly assume this:

Theorem 1.
\n
$$
\bar{\boldsymbol{\beta}}_k - \boldsymbol{\beta}_* = (\mathbf{I} - B\alpha \mathbf{Z})^k (\boldsymbol{\beta}_0 - \boldsymbol{\beta}_*) + \frac{1}{n} [\mathbf{I} - (\mathbf{I} - B\alpha \mathbf{Z})^k] \mathbf{Z}^{\dagger} \widetilde{\mathbf{X}}^{\mathsf{T}} \boldsymbol{\eta}.
$$

Proposition 4. Let $X = USV^T$ be a SVD of X, and $W = \frac{1}{n}$ $\frac{1}{n} \mathbf{X}^\mathsf{T} \mathbf{X}$ have eigenvalues $\hat{\lambda}$ \boldsymbol{h}_i . If $\Pi_b \equiv \mathbf{I} - p_{B,\alpha}(\mathbf{W})$ and Σ is isotropic, then *p*

• Comparison with full-batch gradient descent:

$$
\boldsymbol{\beta}_k^{\text{full}} - \boldsymbol{\beta}_* = (\mathbf{I} - \alpha \mathbf{W})^k (\boldsymbol{\beta}_0 - \boldsymbol{\beta}_*) + \frac{1}{n} \left[\mathbf{I} - (\mathbf{I} - \alpha \mathbf{W})^k \right] \mathbf{W}^\dagger \mathbf{X}^\mathsf{T} \boldsymbol{\eta}.
$$

Mini-batches sampled with replacement \Rightarrow same expression for mean iterate as full-batch GD with $k \leftarrow Bk$ (time change).

However, full-batch can diverge while mini-batch converges (right plot).

Generalization error dynamics

$$
R_{\mathbf{X}}(\boldsymbol{\beta}) := \mathbb{E}\left[(\mathbf{x}^{\mathsf{T}}\boldsymbol{\beta} - \mathbf{x}^{\mathsf{T}}\boldsymbol{\beta}_{*})^{2} \mid \mathbf{X} \right] = \mathbb{E}\left[\|\boldsymbol{\beta} - \boldsymbol{\beta}_{*}\|_{\boldsymbol{\Sigma}}^{2} \mid \mathbf{X} \right].
$$

Theorem 2. Let
$$
P_{Z,0}
$$
, P_Z be projectors onto Null(**Z**), Range(**Z**).
\n
$$
R_{\mathbf{X}}(\bar{\beta}_k) = (\beta_0 - \beta_*)^T P_{Z,0} \Sigma P_{Z,0} (\beta_0 - \beta_*)
$$
\n
$$
+ (\beta_0 - \beta_*)^T P_Z (\mathbf{I} - B\alpha \mathbf{Z})^k \Sigma (\mathbf{I} - B\alpha \mathbf{Z})^k P_Z (\beta_0 - \beta_*)
$$
\n
$$
+ \frac{\sigma^2}{n} \text{Tr} \left(\left[\mathbf{I} - (\mathbf{I} - B\alpha \mathbf{Z})^k \right] \Sigma \left[\mathbf{I} - (\mathbf{I} - B\alpha \mathbf{Z})^k \right] \mathbf{Z}^\dagger \left(\frac{1}{n} \widetilde{\mathbf{X}}^\dagger \widetilde{\mathbf{X}} \right) \mathbf{Z}^\dagger \right)
$$

Decomposition into fixed error in "frozen subspace" $+$ bias component $(\rightarrow 0) +$ variance component $(\rightarrow \frac{\sigma^2}{n})$ $\frac{\sigma^2}{n}$ Tr $\sqrt{ }$ $\sum \! \mathbf{Z}^\dagger \!\left(\frac{1}{n}\right.$ $\frac{1}{n}\widetilde{\mathbf{X}}^\mathsf{T}\widetilde{\mathbf{X}}$ Z^{\dagger}). Two-batch case: limiting variance $= (1 + O(\alpha))\frac{\sigma^2}{n}$ $\frac{\sigma^2}{n}\operatorname{Tr}\left(\Sigma \mathbf{Z}^\dagger\right)$, which is highly reminiscent of $\frac{\sigma^2}{n}$ $\frac{\sigma^2}{n}\mathrm{Tr}\left(\Sigma \mathbf{W}^\dagger\right)$ for full-batch GD.

Proposition 3. Suppose *p* is fixed. Then $\mathbf{Z}(\alpha/B) \to \Sigma(\mathbf{I} - p_{B,\alpha}(\Sigma))$ as $n \to \infty$, where $p_{B,\alpha}$ is a polynomial. (e.g., $p_{B,2}(\Sigma) = \frac{1}{4}$ $\frac{1}{4}\alpha\Sigma$, and $p_{B,3}(\Sigma) = \frac{1}{3}$ $\frac{1}{3} \alpha \Sigma - \frac{1}{27}$ $\frac{1}{27}\alpha^2\Sigma^2$).

$$
\left(\begin{array}{c}\n\text{Obs} \\
\text{Z} \\
\text{z}\n\end{array}\right)
$$

$$
R_{\mathbf{X}}(\bar{\boldsymbol{\beta}}_k) = \sum_{i=1}^r [1 - \alpha \hat{\lambda}_i (1 - p_{B,\alpha}(\hat{\lambda}_i))]^{2k} [\mathbf{V}^{\mathsf{T}}(\boldsymbol{\beta}_0 - \boldsymbol{\beta}_*)]_i
$$

+
$$
\frac{\sigma^2}{n} \sum_{i=1}^p \frac{1}{\hat{\lambda}_i} \left(1 - [1 - \alpha \hat{\lambda}_i (1 - p_{B,\alpha}(\hat{\lambda}_i))]^k \right)^2.
$$

Upshot: explicit description of how the trajectory differs from fullbatch GD under linear scaling, based on the spectrum of the features sample covariance (same expression with $\hat{\lambda}_i \leftarrow \hat{\lambda}_i (1-p_{B,\alpha}(\hat{\lambda}_i))$)!

Proportional regime: $p/n \to \gamma \in (0, \infty)$

Two-batch, Gaussian \mathbf{X} : $\alpha \mathbf{Z}(\alpha/2) = \frac{1}{2}$ $\frac{1}{2}\alpha(\mathbf{W}_1 + \mathbf{W}_2) - \frac{1}{8}$ $\frac{1}{8}\alpha^2(\mathbf{W}_2\mathbf{W}_1+$ **W**1**W**2) is a non-commutative polynomial of Wishart random matrices: no (simple) analytical characterization of limiting spectral distribution. Could numerically compute using an algorithm of [Belinschi et al.](#page-0-0) [\(2017\)](#page-0-0),

 \setminus

Asymptotic analysis: p fixed, $n \to \infty$

 $\mathsf{Observation}\colon \mathsf{if}\ \Sigma$ has eigenvalues λ_i , then the limiting eigenvalues of are $\lambda_i(1-p_{B,\alpha}(\lambda_i))$: shrinkage effect on spectrum.

based on operator-valued free probability. Figure shows results in (left) underparameterized $\gamma = 1/4$ and (right) overparameterized $\gamma = 3/2$ regimes. Shrinkage effect is again apparent.

Rishi Sonthalia² ² Elizaveta Rebrova¹