Error dynamics of mini-batch gradient descent with random reshuffling for least squares
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Introduction

Machine learning models are often trained using mini-batch gradient
descent with random reshuffling: in each epoch, the dataset is randomly
partitioned into mini-batches and iterated through.

4 )
Question: What are the error dynamics and generalization capabil-
ities of the learned model?

Main difficulty: Introduction of dependencies complicates the anal-

ysis, compared to sampling with replacement.
o

J

Model. Observe n i.i.d. data samples (x;,y;), where y; = ZTB* +n;
for some B, € R? and noise 7; (i.e., y = X8, + n).

Partition data X € R"*? into B mini-batches X;,...,Xp € R/ B)xp

In each epoch, mini-batches are ordered by a random permutation 7 €
Sp, and B iterations of GD with step size o for the least squares loss

Ly(B) = 2||XyB — yull3 are performed:

b —1) Ba h—1
By =B = — X1y (XewB "~ yew),
[Summary. By studying the discrete error dynamics of the mean

)}, we find that there

are higher-order step size-dependent effects introduced by sampling
without replacement, which result in subtly different trajectories un-
der the linear scaling rule compared to full-batch gradient descent.
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b=12 ... B.

* )

iterate after k epochs, Bk = I unit(sp) {B/QB

Definition of modified features

Let W, = %X{Xb be the sample covariance of each mini-batch,
and W = 1XTX = 1251XTX19 Define modified mini-batches

Xb — Xbe, where Hb L= ETNUnlf(SB) [H < 1(b >(I — CVWT(]')) , and

concatenate into X (i.e., feature x; <+ II;x;). Define the sample cross-
covariance

1~
7 =-X'X == ZHbXTXb

mn

This can be shown to be symmetric, and Z = Z(a) = W + O(«). In
general: 7. is a non-commutative polynomial of W, ..., Wp.

Example (two-batch GD). For B = 2, X; = X, (I - $aW,), and
7 — % (W1 + WQ) — ioz (W2W1 -+ W1W2).
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Training error dynamics

" Theorem 1.

By — B. = (1— BaZ)(Bo — B.) +~

- [I- (- Baz)'] Z'X'n.
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e Comparison with full-batch gradient descent:

B = (1= aW)H(By— B.) + - [T (1 - aW)] WIXTn

Mini-batches sampled with replacement = same expression for mean
iterate as full-batch GD with k <— Bk (time change).

e Linear scaling rule (i.e., using step size a/ B with B batches) = mini-
batch dynamics match full-batch GD up to first order in o (left plot).

However, full-batch can diverge while mini-batch converges (right plot).
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Generalization error dynamics

Assume that E |x;x}| = X, and 7; has mean zero and variance o*. We
are interested in the dynamics of the risk

RX(/B) =K [(XT/B — XTB*)Q ’ X] =K [HIB — /B*H% ’ X} :
' Theorem 2. Let Py o, Pz be projectors onto Null(Z), Range(Z).

Rx(Br) = (Bo — B+)"PzoEPz0(8y — B.)

(By — B+)'Pz(I — BaZ)">(I — BaZ)"Py(By — Bs)
02

T

\

+—Tr ([I — (I— BaZ)*| Z [1— (I - BaZ)"] Zt (1}2 X> z*)
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Decomposition into fixed error in “frozen subspace” + bias component
(— 0) 4 variance component (— %QTI‘ (ZZT(%XTX) ZT)).
Two-batch case: limiting variance = (1 + O(oz))%2 Tr (XZ7), which is
highly reminiscent of %2 Tr (ZWT) for full-batch GD.

Asymptotic analysis: p fixed, n — o

Proposition 3. Suppose p is fixed. Then Z(a/B) = X(I — pp.o(¥))
as n — 00, where DB is a polynomial. (e.g., pp2(3) = 1aX, and
pps(X) = 0% — £a?Y?).

Observation: if X has eigenvalues );, then the limiting eigenvalues of
Z are \i(1 — pp o(N;)): shrinkage effect on spectrum.

dea: Features x; i.i.d. with E [x;x} | =X = W}, — X for all b € [B]

a.s. by the law of large numbers. In particular, II; is independent of b
asymptotically. If we explicitly assume this:

Proposition 4. Let X = USV' be a SVD of X, and W = XX
have eigenvalues NI, =1 — pB.o(W) and X is isotropic, then

— PNV (B — B2);

+ % Z X@ (1 — |1 - Oz&-(l — pB,on‘@'))]k)Q :

( Upshot: explicit description of how the trajectory differs from full-
batch GD under linear scaling, based on the spectrum of the features
sample covariance (same expression with \; < \i(1 — pp.a(Ai)))!

.

Proportional regime: p/n — ~ € (0, )
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Two-batch, Gaussian X: aZ(a/2) = (W1 + Ws) — 1a*(W, W, +
W1 W,) is a non-commutative polynomial of Wishart random matrices:
no (simple) analytical characterization of limiting spectral distribution.

Could numerically compute using an algorithm of Belinschi et al. (2017),
based on operator-valued free probability. Figure shows results in (left)
underparameterized v = 1/4 and (right) overparameterized v = 3/2
regimes. Shrinkage effect is again apparent.
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