
A Subspace Constrained Randomized Kaczmarz Method
for Structure or External Knowledge Exploitation

Jackie Lok1 Elizaveta Rebrova1

1Princeton University

Problem setup

Let A ∈ Rm×n, m ≥ n, be full rank. Consider solving a consistent,
overdetermined system of linear equations

Ax = b, with unique solution x∗ ∈ Rn.

Fix a subset I0 ⊆ [m] of rows, and let P := I − A†
I0

AI0

be the orthogonal projector onto Null(AI0). Suppose that
the initial iterate x0 satisfies AI0x0 = bI0.

 AI0

AI1


Subspace constrained randomized Kaczmarz (SCRK)

The SCRK method modifies the RK method (Strohmer, Vershynin, 2009)
to confine the iterates within a selected solution space AI0x = bI0.
Algorithm. In each iteration, a row j ∈ I1 := [m] \ I0 is sampled with
probability ‖Paj‖2/‖AI1P‖2

F , and the current iterate xk is projected
onto the hyperplane AI0∪{j}x = bI0∪{j} using a simple formula:

xk+1 = xk +
(bj − aT

j xk)
‖Paj‖

· Paj

‖Paj‖
. (4)

Theorem 1. The SCRK iterates xk satisfy

E‖xk − x∗‖2 ≤
(

1 − σ+
min(AI1P)2

‖AI1P‖2
F

)k

· ‖x0 − x∗‖2.

SCRK convergence rate depends on restricted singular values: e.g.
σ+

min(AI1P) = min
x∈Null(AI0)∩Sn−1

‖Ax‖.

I0 = ∅ ⇒ RK rate based on scaled condition number ‖A‖F/σmin(A).

Upshot: If we can find a (small) subset of rows I0 such that
‖AI1P‖F � ‖A‖F or σ+

min(AI1P) � σmin(A), then SCRK � RK.

Exploiting (low-rank) structure

Question: Suppose that A is effectively low-rank in the sense that

‖A‖2
F =

n∑
i=1

σi(A)2 �
n∑

i=r+1
σi(A)2 = ‖A − A(r)‖2

F

for some r > 0. How can we use this to accelerate convergence?
Connection with approximate CX decompositions (randomized numerical
linear algebra) ⇒ can find a good subspace by randomly sampling rows!

Theorem 2. If I0 contains O(r log r/ε2) rows of A, sampled w.p.
proportional to the leverage scores of A relative to its best rank-r
approximation, then with prob. ≥ 0.9 over the randomness in I0,

E‖xk − x∗‖2 ≤
(

1 − σmin(A)2

(1 + ε)
∑n

i=r+1 σi(A)2

)k

· ‖x0 − x∗‖2.

Corrupted linear systems

Furthermore, consider solving a corrupted linear system, where the goal
is to reconstruct x∗ given a set of corrupted measurements

b̃ = b + bC, with bC a sparse vector supported on C ⊆ [m].

The QuantileSCRK method adapts the SCRK method to solve this prob-
lem, following the QuantileRK method introduced by (Haddock et al.,
2022). Given a quantile parameter q ∈ (0, 1], the projection (4) is made
only if the residual |bj − aT

j xk| of the sampled row is less than the qth
quantile of all the residuals.

Exploiting external knowledge

Question: Suppose we have external knowledge about corruption-free
measurements: i.e. I0 ⊆ [m] with |I0| = m0 such that (bC)I0 = 0. How
can we exploit this to accelerate (or enable) convergence?
We can show that if the effective aspect ratio (m − m0)/(n − m0) is
tall enough, and the proportion of corruptions β := |C|/(m − m0) is not
too large, then QuantileSCRK converges robustly and quickly for generic
“homogeneous” matrices A.

Theorem 3. Suppose that A ∈ Rm×n is a “Gaussian-like” random
matrix. There exist constants R, β0, c such that if

m − m0

n − m0
≥ R and β := |C|

m − m0
≤ β0,

then with prob. at least 1 − e−c(m−m0) over the randomness in A, the
QuantileSCRK iterates xk converge to x∗ with

E‖xk − x∗‖2 ≤
(

1 − c

n − m0

)k

· ‖x0 − x∗‖2.

Proof ideas: combine a deterministic convergence criterion with results
showing that σ+

min(AI1P) & (q − β)3/2√m − m0 and σmax(AI1P) .√
m − m0 w.h.p. using tools from high-dimensional probability.

QuantileSCRK on corrupted Gaussian system
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QuantileSCRK
with q ∼ 0.8 and
m0 = 75
converges
effectively on an
almost-square
Gaussian system
A ∈ R130×100

with ∼ 8%
corrupted
measurements.

SCRK on effectively low-rank system

Each row of A ∈ R2,000×1,000 is given by aj = 0.9a′
j + 0.1cj, where a′

j and cj are unit vectors
drawn from a fixed 20-dimensional subspace U and its orthogonal complement U⊥.

QuantileSCRK corrupted
phantom reconstruction

QuantileSCRK (right) offers a good
reconstruction of an underlying phantom
(left) with sensing matrix A ∈ R4,500×2,500

and a significant number (1, 125 or 25%)
of corruptions using m0 = 500 trusted
measurements (e.g. good sensors),
q = 0.7, and k = 60m iterations.

arXiv:2309.04889; Linear Algebra Appl. 698 (2024) https://jackielok.github.io/ jackie.lok@princeton.edu

https://arxiv.org/abs/2309.04889
https://doi.org/10.1016/j.laa.2024.06.010
https://jackielok.github.io/
mailto:jackie.lok@princeton.edu

