A Subspace Constrained Randomized Kaczmarz Method for Structure or External Knowledge Exploitation

Elizaveta Rebrova¹ Jackie Lok¹

¹Princeton University

Problem setup

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $m \ge n$, be full rank. Consider solving a consistent, overdetermined system of linear equations

$$A\mathbf{x} = \mathbf{b}$$
, with unique solution $\mathbf{x}^* \in \mathbb{R}^n$.
Fix a subset $I_0 \subseteq [m]$ of rows, and let $\mathbf{P} := \mathbf{I} - \mathbf{A}_{I_0}^{\dagger} \mathbf{A}_{I_0}$
be the orthogonal projector onto $\operatorname{Null}(\mathbf{A}_{I_0})$. Suppose that
the initial iterate \mathbf{x}^0 satisfies $\mathbf{A}_{I_0}\mathbf{x}^0 = \mathbf{b}_{I_0}$.

Subspace constrained randomized Kaczmarz (SCRK)

The SCRK method modifies the *RK method* (Strohmer, Vershynin, 2009) to confine the iterates within a *selected solution space* $A_{I_0}x = b_{I_0}$.

Algorithm. In each iteration, a row $j \in I_1 := [m] \setminus I_0$ is sampled with probability $\|\mathbf{Pa}_{i}\|^{2}/\|\mathbf{A}_{I_{1}}\mathbf{P}\|_{F}^{2}$, and the current iterate \mathbf{x}^{k} is projected onto the hyperplane $A_{I_0 \cup \{j\}} \mathbf{x} = \mathbf{b}_{I_0 \cup \{j\}}$ using a simple formula:

Corrupted linear systems

Furthermore, consider solving a corrupted linear system, where the goal is to reconstruct \mathbf{x}^* given a set of *corrupted measurements*

 $\mathbf{b} = \mathbf{b} + \mathbf{b}_{\mathcal{C}}$, with $\mathbf{b}_{\mathcal{C}}$ a sparse vector supported on $\mathcal{C} \subseteq [m]$.

The QuantileSCRK method adapts the SCRK method to solve this problem, following the *QuantileRK method* introduced by (Haddock et al., 2022). Given a quantile parameter $q \in (0, 1]$, the projection (\triangle) is made only if the residual $|b_j - \mathbf{a}_j^\mathsf{T} \mathbf{x}^k|$ of the sampled row is less than the qth quantile of all the residuals.

Exploiting external knowledge

Question: Suppose we have external knowledge about corruption-free measurements: i.e. $I_0 \subseteq [m]$ with $|I_0| = m_0$ such that $(\mathbf{b}_{\mathcal{C}})_{I_0} = \mathbf{0}$. How can we exploit this to accelerate (or enable) convergence?

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \frac{(b_j - \mathbf{a}_j^{\mathsf{T}} \mathbf{x}^k)}{\|\mathbf{P} \mathbf{a}_j\|} \cdot \frac{\mathbf{P} \mathbf{a}_j}{\|\mathbf{P} \mathbf{a}_j\|}.$$
 (\bigtriangleup)

Theorem 1. The SCRK iterates
$$\mathbf{x}^k$$
 satisfy

$$\mathbb{E}\|\mathbf{x}^k - \mathbf{x}^*\|^2 \leq \left(1 - \frac{\sigma_{\min}^+ (\mathbf{A}_{I_1} \mathbf{P})^2}{\|\mathbf{A}_{I_1} \mathbf{P}\|_F^2}\right)^k \cdot \|\mathbf{x}^0 - \mathbf{x}^*\|^2.$$

• SCRK convergence rate depends on restricted singular values: e.g.

$$\sigma_{\min}^+(\mathbf{A}_{I_1}\mathbf{P}) = \min_{\mathbf{x}\in \operatorname{Null}(\mathbf{A}_{I_0})\cap \mathbb{S}^{n-1}} \|\mathbf{A}\mathbf{x}\|.$$

• $I_0 = \emptyset \Rightarrow \mathsf{RK}$ rate based on scaled condition number $\|\mathbf{A}\|_F / \sigma_{\min}(\mathbf{A})$.

Upshot: If we can find a (small) subset of rows I_0 such that $\|\mathbf{A}_{I_1}\mathbf{P}\|_F \ll \|\mathbf{A}\|_F$ or $\sigma_{\min}^+(\mathbf{A}_{I_1}\mathbf{P}) \gg \sigma_{\min}(\mathbf{A})$, then SCRK $\gg RK$.

Exploiting (low-rank) structure

Question: Suppose that A is effectively low-rank in the sense that

$$\|\mathbf{A}\|_{F}^{2} = \sum_{i=1}^{n} \sigma_{i}(\mathbf{A})^{2} \gg \sum_{i=r+1}^{n} \sigma_{i}(\mathbf{A})^{2} = \|\mathbf{A} - \mathbf{A}_{(r)}\|_{F}^{2}$$

for some r > 0. How can we use this to accelerate convergence?

Connection with approximate CX decompositions (randomized numerical *linear algebra*) \Rightarrow can find a good subspace by randomly sampling rows!

Theorem 2. If I_0 contains $O(r \log r/\varepsilon^2)$ rows of **A**, sampled w.p. proportional to the *leverage scores* of A relative to its best rank-rapproximation, then with prob. ≥ 0.9 over the randomness in I_0 ,

We can show that if the effective aspect ratio $(m - m_0)/(n - m_0)$ is tall enough, and the proportion of corruptions $\beta := |\mathcal{C}|/(m - m_0)$ is not too large, then QuantileSCRK converges robustly and quickly for generic "homogeneous" matrices A.

Theorem 3. Suppose that $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a *"Gaussian-like" random matrix*. There exist constants R, β_0, c such that if

$$\frac{m-m_0}{n-m_0} \ge R \quad \text{and} \quad \beta := \frac{|\mathcal{C}|}{m-m_0} \le \beta_0,$$

then with prob. at least $1 - e^{-c(m-m_0)}$ over the randomness in A, the QuantileSCRK iterates \mathbf{x}^k converge to \mathbf{x}^* with

$$\mathbb{E}\|\mathbf{x}^{k} - \mathbf{x}^{*}\|^{2} \leq \left(1 - \frac{c}{n - m_{0}}\right)^{k} \cdot \|\mathbf{x}^{0} - \mathbf{x}^{*}\|^{2}.$$

Proof ideas: combine a deterministic convergence criterion with results showing that $\sigma_{\min}^+(\mathbf{A}_{I_1}\mathbf{P}) \gtrsim (q-\beta)^{3/2}\sqrt{m-m_0}$ and $\sigma_{\max}(\mathbf{A}_{I_1}\mathbf{P}) \lesssim$ $\sqrt{m-m_0}$ w.h.p. using tools from high-dimensional probability.

QuantileSCRK on corrupted Gaussian system

$$\mathbb{E}\|\mathbf{x}^{k} - \mathbf{x}^{*}\|^{2} \leq \left(1 - \frac{\sigma_{\min}(\mathbf{A})^{2}}{(1 + \varepsilon)\sum_{i=r+1}^{n}\sigma_{i}(\mathbf{A})^{2}}\right)^{k} \cdot \|\mathbf{x}^{0} - \mathbf{x}^{*}\|^{2}.$$

QuantileSCRK corrupted phantom reconstruction

SCRK on effectively low-rank system

QuantileSCRK (right) offers a good reconstruction of an underlying phantom (left) with sensing matrix $\mathbf{A} \in \mathbb{R}^{4,500 \times 2,500}$ and a significant number (1, 125 or 25%)of corruptions using $m_0 = 500$ trusted measurements (e.g. good sensors), q = 0.7, and k = 60m iterations.

Each row of $\mathbf{A} \in \mathbb{R}^{2,000 \times 1,000}$ is given by $\mathbf{a}_j = 0.9\mathbf{a}'_j + 0.1\mathbf{c}_j$, where \mathbf{a}'_j and \mathbf{c}_j are unit vectors drawn from a fixed 20-dimensional subspace \mathcal{U} and its orthogonal complement \mathcal{U}^{\perp} .

arXiv:2309.04889; Linear Algebra Appl. 698 (2024)

https://jackielok.github.io/

jackie.lok@princeton.edu