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Problem setup

Let A € R™" m > n, be full rank. Consider solving a consistent,
overdetermined system of linear equations

Ax = b, x € R" /

Fix a subset Iy C [m] of rows, and let P :=1 — AR)AIO
be the orthogonal projector onto Null(A; ). Suppose that \
the initial iterate x" satisfies A;x" = by,.

with unique solution

Subspace constrained randomized Kaczmarz (SCRK)

The SCRK method modifies the RK method (Strohmer, Vershynin, 2009)

to confine the iterates within a selected solution space A;x = by,.

Algorithm. In each iteration, a row j € I; := |m/| \ Ij is sampled with
probability |Pa;||?/||A;,P||%, and the current iterate x* is projected
onto the hyperplane Ay ;3x = byuq;y using a simple formula:
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(Theorem 1. The SCRK iterates x" satisfy
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- SCRK convergence rate depends on restricted singular values: e.g.
(AL P) = |Ax]|.

min min

xeNull(Af,)NS" 1

- [y = () = RK rate based on scaled condition number ||Al|r/omin(A).

Upshot: If we can find a (small) subset of rows I, such that
HA[1PHF < HAHF or O';;lm(A[lP) > Umin(A), then SCRK > RK.

Exploiting (low-rank) structure

Question: Suppose that A is effectively low-rank in the sense that

n n

|A[[F =D oA > > oA =[|A - A%
i=1 i=r+1

for some r > 0. How can we use this to accelerate convergence?

Connection with approximate CX decompositions (randomized numerical
linear algebra) = can find a good subspace by randomly sampling rows!
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Theorem 2. If I contains O(r logr/c*) rows of A, sampled w.p.
proportional to the leverage scores of A relative to its best rank-r
approximation, then with prob. > 0.9 over the randomness in I,
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SCRK on effectively low-rank system

Elizaveta Rebrova?

M| vET | Nov (1
TES | TAM
1| Ex |TvMm([]

Corrupted linear systems

Furthermore, consider solving a corrupted linear system, where the goal
is to reconstruct X* given a set of corrupted measurements

~

b =b + be, with be a sparse vector supported on C C |m).

The QuantileSCRK method adapts the SCRK method to solve this prob-
lem, following the QuantileRK method introduced by (Haddock et al.,
2022). Given a quantile parameter g € (0, 1], the projection (A) is made
only if the residual |b; — a;x"| of the sampled row is less than the qth
quantile of all the residuals.

Exploiting external knowledge

Question: Suppose we have external knowledge about corruption-free
measurements: i.e. [y C |m] with |[y| = my such that (b¢);, = 0. How
can we exploit this to accelerate (or enable) convergence?

We can show that if the effective aspect ratio (m — my)/(n — my) is
tall enough, and the proportion of corruptions 3 := |C|/(m — my) is not
too large, then QuantileSCRK converges robustly and quickly for generic
“homogeneous” matrices A.
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Theorem 3. Suppose that A € R"™*" is a “Gaussian-like” random
matrix. There exist constants R, 0y, ¢ such that if
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then with prob. at least 1 — e~ over the randomness in A, the
QuantileSCRK iterates x”* converge to x* with
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Proof ideas: combine a deterministic convergence criterion with results
showing that o (A;P) > (¢ — B)**ym — mg and o (A P) <

vm — mgy w.h.p. using tools from high-dimensional probability.

QuantileSCRK on corrupted Gaussian system
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Quantile parameter (q)

QuantileSCRK corrupted
phantom reconstruction

Each row of A € R*M*L0W s given by a; = O.9a§- + 0.1c;, where a’. and c; are unit vectors
drawn from a fixed 20-dimensional subspace I/ and its orthogonal complement /.
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QuantileSCRK (right) offers a good
reconstruction of an underlying phantom
(left) with sensing matrix A € R*>00x250
and a significant number (1, 125 or 25%)
of corruptions using my = 500 trusted
measurements (e.g. good sensors),

g = 0.7, and k = 60m iterations.
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